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Abstract—This paper presents a new solution method that com-
bines state-space and nodal analysis for the simulation of electrical
systems. The presented flexible clustering of state-space-described
electrical subsystems into a nodal method offers several advantages
for the efficient solution of switched networks, nonlinear functions,
and for interfacing with nodal model equations. This paper ex-
tends the concept of discrete companion branch equivalent of the
nodal approach to state-space described systems and enables nat-
ural coupling between them. The presented solution method is si-
multaneous and enables benefitting from the advantages of two dif-
ferent modeling approaches normally exclusive from one another.

Index Terms—Electromagnetic transients, nodal analysis, real
time, state space.

I. INTRODUCTION

T HE computation of electromagnetic transients can be
based on various numerical methods for the formulation

and solution of network equations. The most widely used
methods fall into two categories: 1) the state-space and 2)
nodal-analysis formulations. State-space equations are used,
for example, in [1] for inserting electrical circuit equations into
the Simulink [2] solver. Nodal equations are widely used in
Electromagnetic Transients (EMT)-type applications, such as
[3] and [4]. The modified-augmented-nodal analysis method is
used in [5] and [6] for eliminating topological restrictions from
the nodal-analysis approach.

The nodal equations are assembled after discretizing all cir-
cuit devices with a numerical integration rule, such as trape-
zoidal integration. These equations are particularly powerful
and efficient for simulating very large networks through sparse
matrix methods. Some real-time simulator technologies are also
based on the nodal formulation [7], [8].

In the case of state-space equations, the numerical integration
technique can be selected after formulation, which simplifies
the programming of variable time-step integration techniques.
In addition, state-space representation can be particularly pow-
erful for controller design methods [1]. The main disadvantage
is the computing time required for the automatic synthesis of
state-space matrices. Other complications can arise for the si-
multaneous solution of nonlinear models, for the simulation of
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large networks, and for large numbers of states in some model
equations.

Some variations of the nodal approach are based on the con-
cept of group separation for increasing efficiency and flexibility.
In [9], the use of groups provides a technique for diminishing
the number of nodal points and, consequently, the size of the
system matrix for real-time computations [10]. In [11], the com-
pensation method allows separating circuits and solving them
independently. The compensation method is noniterative when
the solved circuits are linear. A similar idea is used in [12]
for reducing the number of nodal connection points. In [13],
state-space equations are also used for this purpose.

The inclusion of state-space equations into nodal equations
has been applied in [14] (see also [15]) for the purpose of model
circuit synthesis from fitted measurements.

This paper presents a general methodology for the simul-
taneous interfacing of nodal equations with state-space equa-
tions for arbitrary network topologies. This interfacing allows
eliminating several modeling limitations in state-space-based
solvers. This interfacing allows creating state-space groups that
can be maintained independently for efficient computation of
switching events. In addition, each state-space group uses its
own automatic formulation of state-space matrices which obvi-
ously reduces the formulation time when compared to unique
state-space equations of the complete system without grouping.

The discrete state-space solvers are inefficient for handling
switching events, especially in real-time applications, where
precalculation methods must be used. The massive precalcu-
lation of state-space matrix sets for all switch combinations
becomes problematic in terms of the required memory for large
numbers of coupled switches [16].

The method proposed in this paper contributes to the im-
provement of state-space-based power system simulation
solvers. It notably offers important advantages for real-time
applications.

This paper starts with a theoretical presentation and follows
with demonstration cases. The reference state-space and nodal
analysis solvers used in this paper are those presented in [1] and
[17], respectively.

II. STATE-SPACE NODAL METHOD

The state-space nodal (SSN) method described in this sec-
tion uses arbitrary size clusters (groups) of electrical elements
and combines them into a single nodal admittance matrix.
The cluster equations are discretized state-space equations.
The trapezoidal integration rule is used in the discretization
process. The clusters include implicitly unknown node voltages
at their nodal connection points. These voltages are at common
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connection points and must be solved simultaneously using
nodal analysis.

Finally, in the proposed SSN method, the cluster equations
are not limited to state-space equations. The clusters can be
also derived from nodal analysis and combined with state-space
clusters.

A. State-Space Groups

Any given group of circuit elements can be given the state-
space equations

(1)

where bold characters are used to denote vectors and matrices.
The column vectors and are the state variable and input
vectors, respectively. The state variables are capacitor voltages
and inductor currents. They are independent and found from the
proper tree of the circuit. The column vector is the vector of
outputs. The state-space matrices , , , and corre-
spond to the th permutation of switches and piecewise linear
device segments. Automatic formulation methods for (1) are of
out the scope of this paper and can be found in many references,
such as [18] and [19].

The discretization of state equations in (1) results in

(2)

where is the integration time step and the hatted matrices
result from the discretization process using trapezoidal integra-
tion. This step is also known as the numerical integrator substi-
tution [19] with the trapezoidal integrator. In this paper, (2) and
the output equations in (1) are refined as follows:

(3)

(4)

The subscript character refers to internal sources (injections)
and the subscript refers to external nodal injections. The com-
bination of the lower row of (4) with (3) gives

(5)

It is apparent that (5) has an independent term (known variables
before solving for ) and can be written as

(6)

Here, the subscript (“history”) has been used to denote
known variables for the solution of this equation and

(7)

Two different interpretations can be made from (7).
When represents current injections (entering a group) and

is for node voltages, then represents history current

sources and is an admittance matrix. This is called
hereinafter a V-type SSN group and it is a Norton equivalent.

When represents voltages and holds currents entering
a group, then represents history voltage sources ,
and is an impedance matrix. This is referred to hereinafter
as a I-type SSN group and it is a Thevenin equivalent.

In general, it is possible to have both types of groups (V-type
and I-type) by rewriting (6) as follows:

(8)

where the superscripts I and V denote I-type and V-type rela-
tions, respectively, and where the notation has been simplified
by dropping the subscripts and in . This equation is
referred to as a mixed-type group. It can be straightforwardly
transformed into a nodal representation by regrouping all cur-
rent vectors ( and ) on the left-hand side

(9)

The admittance matrix derived from a group (of any type)
is mapped though its nodes and inserted into the global nodal
admittance matrix of

(10)

where the vector contains known nodal injections, and the
vector is the vector of all unknown node voltages. The
matrix does not change if switch positions do not change and
piecewise linear devices represented in (3) remain on previous
time-step segments. The negative of the first term after the
equality sign in (9) contributes to the vector .

If in the system of (1), the equation for is modified to in-
clude the differential of , then

(11)

and the I-type groups can be avoided. However, (11) with the
capability to use I-type groups, remains more generic since in
many state-space solvers, such as in [1], the matrix is not
readily available.

It is noticed that if the modified-augmented-nodal analysis
(MANA) method [5] is used, the upper part of (8) can be inserted
directly, thus avoiding matrix inversions. In the MANA method,
(10) is written as

(12)

where the subscript denotes MANA matrices (not state-space
matrices) and vectors, the vector can hold unknown voltages
and currents, and becomes a submatrix in . In (8), the
variables and can be regrouped on the right-hand
side and listed in with coefficients inserted in equation rows
of . The history (or known) terms participate in .

It is also noticed that it is not necessary to assume that all
groups are using state-space equations. In fact, any given group
can also use nodal equations, in which case, these equations can
be included directly into (10) or in MANA equations. Moreover,
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these equations can contain nonlinear devices solved through an
iterative process and independently from state-space equations.

B. Solution Steps

The complete solution algorithm is defined through the fol-
lowing steps:
Step 1) Find the steady-state solution.
Step 2) Advance to the next time-point.
Step 3) Determine all switch positions ( th permutation) and

formulate state-space (3) and (4).
Step 4) Determine all history terms and update (9).
Step 5) Update (if necessary) the global nodal admittance

matrix that contains contributions from all
groups.

Step 6) Update from group contributions.
Step 7) Solve the system of nodal (10) to determine all node

voltages. This can be done using LU factorization
and a sparse matrix-based solver for efficiency in
larger systems.

Step 8) Use (3) and (4) to compute the state-space solutions
at the current time-point .

Step 9) Go back to Step 2) if the simulation did not reach the
last time-point.

Similar steps can be written for MANA. It also is noticed that
the individual state-space groups can be solved in parallel. It
means that it is possible to program the parallel implementa-
tion (on separate processor cores) of Steps 3)–6) and Step 8).
Depending on the relative size of the groups, this can lead to re-
duced computational time.

The steady-state solution is found by replacing the differen-
tial operator by Laplace , with being the complex op-
erator and as the steady-state solution frequency in radians
per second. Thus, the complex version of (1) for the solution of
state variables becomes

(13)

(14)

(15)

where tilde-uppercase vectors are used to denote phasors, is
the identity matrix, and . Equation (15) is first
inserted into the complex version of (10) (or (12) for MANA) for
finding the nodal solution. It is followed by the solution of (13)
and (14). The solution of state variables at the time point
0 is found by taking the real part of the corresponding phasors.
This solution is used to initialize history terms for the following
time-point solution with discretized (3) and (4).

C. Comparison With State-Space and Contributions to
Real-Time Simulations

The proposed SSN method provides several advantages over
the state-space method. The clustering approach reduces the size
and complexity in the automatic generation of state-space equa-
tions for each group. The groups can be solved in parallel and

Fig. 1. Three-phase system example.

Fig. 2. Simple-switched RLC circuit.

the number of precalculated matrix sets for switching topolo-
gies can become substantially reduced.

In the three-phase example shown in Fig. 1, two arbitrary net-
works, S1 and S2, are interconnected using two switches and
two pi-sections. If the state-space method is used for the entire
system, it will result into state variables. If the state-space
solver precomputes (particularly useful for real-time applica-
tions) the matrix sets for all switch position permutations, it
will require saving in memory 64 matrices for the entire
system.

The same system can be solved using SSN by separating into
two groups (Group 1 and Group 2 shown in Fig. 1). Since the
three-phase capacitors at the separation point will now count
as separate states, the number of state variables in each group
becomes . The size of in (10) is 3 3. Also,
the number of precalculated matrix sets now reduces to

from 64. The created groups are linked only
through the nodal interfacing equations. This allows a parallel
setup and calculations on two independent CPUs or CPU cores.
The computational burden of (10) is negligible when compared
to much larger group equations.

III. VALIDATION

The method proposed in this paper has been validated
using simple and complex systems. In addition to independent
programming, the new method has been also implemented
in the SimPowerSystems [1] (SPS) tool for Simulink. The
reference nodal analysis is the modified-augmented-nodal anal-
ysis (MANA) method of Electromagnetic Transients Program
(EMTP)-RV [17].

A. Simple RLC Case

The simulated circuit is the one shown in Fig. 2. It is based
on an equivalent 500-kV ac system switched onto a mostly ca-
pacitive RLC branch. The SSN method is used with two groups.
Group 1 is of I-type and Group 2 is of V-type. It is noticed that
the methodology proposed in this paper does not impose topo-
logical restrictions.
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Fig. 3. Switch SW current for the circuit of Fig. 2.

Fig. 4. Switch SW current for the circuit of Fig. 2, zoomed version.

The switch is closed at 0.05 s. The circuit is automatically
initialized using phasors and is in steady state when the switch
is closed.

The simulation results for the switch current are shown in
Fig. 3 for two integration time steps, namely s and

s. Both SSN and MANA use halved time-step Back-
ward Euler integration at discontinuity points. Fig. 4 shows the
zoomed version for both methods at the energization instant and
confirms that both methods provide identical simulation results.

B. HVDC System

This system (Fig. 5) is composed of a 1000-MW HVDC
link used to transmit power from a 500-kV, 5000-MVA, and
60-Hz network to a 345-kV, 10 000-MVA, and 50-Hz network.
The ac networks are modeled by equivalents. The rectifier and
the inverter are 12-pulse converters interconnected through
a 300-km distributed parameter line (including propagation
delay) and two 0.5-H smoothing reactors. Capacitor banks, har-
monic filters (11th and 13th), and high-pass filters for a total of
600 Mvars are used on each converter side. The three-winding
transformers are Y-grounded on the primary side and Y-Delta
on the secondary side. The complete model and data are avail-
able in the software SimPowerSystems [1] (see also [20]). The
only difference in this design is that the (300 Mvars) capacitor
of the filter bank on the rectifier part is split into two parts, one
of which is switched.

For the purpose of the test, the following groups are created
on the rectifier side:

• group #1: ac source and impedance, V-type SSN group;
• group #2: switched capacitor, I-type SSN group;
• group #3: fixed filter bank, I-type SSN group;
• group #4: transformer, thyristor-rectifier, and smoothing

reactor, V-type SSN group.

The inverter side is simulated using the state-space method
of [1].

The test consists of the energization of the dc link to the nom-
inal current with the 300-Mvars capacitor being switched on at
1.5 s of the simulation interval.

The simulation results are compared to SPS in Figs. 6–8 for a
fixed integration time step of 25 s. The match is very close and
validates the SSN method. Closer examination of the dc current
(see Fig. 7) will show small differences between the two sim-
ulation methods. This is normal since any small discrepancy in
the thyristor switching methods will cause differences. In the
current SPS code, it is not possible to access details related to
thyristor turn-on/turn-off and reproduce them exactly. The im-
plementation based on the SSN method does not use specific
switching tricks, and the thyristor model is ideal. It is also no-
ticed that low-frequency jitter occurs in both methods. This jitter
is due to the 25- s sampling time step for thyristor switching.
A solution to this problem has been proposed in [21]–[23] (see
also the analysis in [19]) and will be also implemented in the
SSN method.

C. Breaker Test Setup

The objective of this example is to demonstrate that the pro-
posed SSN method can be advantageously used for performing
repetitive studies in state-space solvers. The tested system is
shown in Fig. 9. It has been trimmed to simplify the presen-
tation. It is used for testing fault detection and breaker opening
under various fault conditions. It is a 50-Hz and 225-kV system
with short transmission lines modeled as balanced PI sections.
The source impedances are decoupled with and

63.5 mH. The PI sections have a capacitance of
F/km (diagonal matrix). The positive-sequence resistance and
inductance are 60 m km and 1.27 mH/km, respectively, while
the zero-sequence counterpart is three times higher. The system
is lightly loaded with all loads having 50 MW and 0.
The tested fault locations are identified as to . Various fault
types with fault resistance can be applied. The tested breakers
are BR1 and BR2.

The system is decomposed into five SSN (SS1 to SS5) groups
as identified in Fig. 9. The SS1 group is a mixed type. There are a
total of nine nodal points. The simulation results for CT1 (BR2)
currents with a time step of 25 s for a phase-a to phase-b fault
occurring at 100 ms at are shown in Fig. 10. The breakers
remain closed in this test, and the fault disappears at 150 ms.
The simulation results with SSN and SPS methods are identical.

The system of Fig. 9 uses PI sections and it is not possible
to decouple with propagation delay-based transmission-line
models. This causes problems in real-time applications. There
are two breakers and four fault devices. The breakers use three
switches, and the fault devices require four switches for mod-
eling various types of faults. This requires the precalculation of

sets of state-space solution matrices, which is not realizable.
In the SSN approach, the switches are located in indepen-

dently formulated state-space equations. With the setup of five
groups shown in Fig. 9, the maximum number of combinations
now reduces to with four fault switches and three breaker
switches in the groups SS1 and SS5.
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Fig. 5. Twelve-pulse HVDC system.

Fig. 6. DC-link current.

Fig. 7 DC-link current, zoomed interval.

Fig. 8 Rectifier ac currents as well as SSN (solid line) and SPS (dashed line)
methods.

D. Real-Time Simulation Results

In addition to the offline simulations presented before, the
HVDC system of Fig. 5 and the breaker test setup of Fig. 9

Fig. 9. Breaker test setup, single-line diagram.

Fig. 10. CT1 current, SSN (solid line), and SPS (dashed line) methods.

have been tested in real time on a target platform [24], com-
prising a single 3.2-GHz Xeon i7 Quad-core PC running under
the RedHat Linux kernel. Also, these tests are using the SPS im-
plementation of the SSN algorithm.

The HVDC system was simulated with three cores: one core
for the rectifier side based on the SSN method, the second core
for the inverter side based on the state-space approach, and the
third core was used for simulating the HVDC controls. The
worst-case time step reached 10 s with the groups identified in
Fig. 5. Alternatively, the separate grouping of the two 6-valves
groups could have been made for reducing the number of precal-
culated matrix sets, as the proposed SSN algorithm offers this
flexibility.

The breaker test setup was simulated on a single core. The
worst-case condition gives a time step of 21 s.
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TABLE I
HARD REAL-TIME TIME STEP

Fig. 11. Test system with nonlinear models, single-line diagram.

Table I summarizes the aforementioned results. The
worst-case condition is suitable for “hard” real-time simu-
lation. It is the maximum calculation time of all time steps.
The switching events maximize processor uncaching effects.
The measurements shown in the table were performed without
input/output (I/O) devices.

This simulation performance of the HVDC case is compa-
rable to other real-time simulators [7], [8]. A fair comparison of
solver efficiency is difficult to perform based on timing values
alone, since simulator technology, especially at the hardware
level, differs significantly between existing simulators.

IV. NONLINEAR MODELS

The SPS implementation of the presented SSN method
naturally incorporates nonlinear device models available in
SPS. SPS uses current injections with time-step delay for
representing nonlinearities. The current injection method has
limitations, it may become less precise, and suffers from
stability problems particularly when the integration time step
increases. It is preferable to implement a simultaneous and
iterative approach for best precision and robustness.

The test case presented in this section is used to demonstrate
the capability to use the SSN method on its own for solving
nonlinear models simultaneously. The tested circuit is the one
shown in Fig. 11. The complete system data can be made avail-
able on request. It is a 12.5-kV distribution system with the
representation of an equivalent at the main bus. The two trans-
formers are modeled using a nonlinear inductance for the mag-
netization branch. The flux-current function is shown in Fig. 12.
A piecewise linear representation is used.

This test case also demonstrates that the selection of state-
space and nodal regions is arbitrary. Here, the decision has been
made to select three state-space sections (SS1, SS2, and SS3)
and the rest is kept in nodal (MANA) equations using (12). This
selection is arbitrary. It is, for example, possible to combine

Fig. 12. Nonlinear flux-current characteristic, transformer magnetization
branch model.

Fig. 13. Phase currents, transformer CusTx1, SSN, and EMTP-RV.

SS1 and SS2 into a single state-space representation. Here, the
breaker BR and the fault switches are ideal and it is more effi-
cient to represent them and update their status through (12). The
nonlinear flux-current equations are also represented and solved
more efficiently through (12). In this case, each nonlinear func-
tion is linearized through its piecewise linear representation, but
it is also possible to calculate the differential at each iteration.

For the aforementioned flux-current relation

(16)

where is the nonlinear inductance flux at the time point ,
is the inductance current, is the iteration counter, is

the segment slope at iteration , and is the segment flux at
zero current. Since using voltage unknowns in nodal analysis is
required, it can be demonstrated that (16) can be transformed
into

(17)

where is the inductance voltage and is the flux history
derived from the trapezoidal rule of integration. During the iter-
ative process, updating the coefficient of is required, which
modifies the branch admittance in the matrix of (12). The
last term in (17) requires the iterative updating of in (12).
This approach is identical to the one used in [5] and [17], and is
applied here in the context of the SSN method. Due to lineariza-
tion, the matrix of (12) becomes the Jacobian matrix. Equa-
tion (12) is solved with iterative updating until convergence.

The studied scenario is the occurrence of a phase-a-to-ground
fault (4 ) on bus XFMR. The solution starts in linear steady-
state conditions. The fault occurs at 20 ms and clears at 133 ms.
The breaker BR receives the opening signal at 133 ms and re-
closes at 203 ms. The phase current waveforms on the high-
voltage side of the transformer CusTx1 are shown in Fig. 13.
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Fig. 14. Nonlinear flux-current plot, transformer CusTx1, overlaid simulation,
and actual characteristic.

The validation is performed using EMTP-RV since it uses a si-
multaneous iterative solver. Both methods provide identical re-
sults. The integration time step is 50 s.

The simultaneous solution qualification can be verified by
demonstrating that all solution points remain on the nonlinear
characteristic segments for any integration time step. This is
shown in Fig. 14. Zooming on the knee points will show jumps
between connecting segments, which is normal since a fixed
time step is used. In addition to the fact that the nonlinear tra-
jectory segments of each device are not overrun, convergence
is achieved for all nonlinear devices (in this case, there are two
magnetization branches) at each solution time point and within
simultaneous electrical coupling.

It is observed here that the iterative process is applied to
(12). The size of this system is normally smaller compared to
the representation of the entire network in MANA equations.
It becomes much smaller when the number of nodes evacuated
in linear state-space equations increases. The iterative process
requires repetitive refactoring of the matrix and becomes
significantly more efficient when the size of reduces.
Thus, the presented SSN method has the potential to introduce
a nonlinear iterative solution methodology into its real-time
implementation.

V. CONCLUSION

This paper presented a power system simulation solver based
on the combination of state-space and nodal-analysis formula-
tions of circuit equations. It is also compatible with modified-
augmented-nodal analysis. The presented new method makes
use of internal grouping of electric elements to enable a mod-
ulation of computational burden between state-space and nodal
equations. It offers several numerical advantages.

The new method offers the capability of dramatic reduction
in the number of saved matrix sets for switching permutations.
This is particularly useful for real-time applications as demon-
strated in this paper. Another advantage for state-space equa-
tions is the inheritance of an efficient and simultaneous non-
linear solution capability from the combination with nodal equa-
tions. Moreover, the iterative solver uses a reduced nodal matrix
which increases efficiency and enables anticipating the intro-
duction of iterative solvers in real-time applications.
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