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Abstract—This paper describes the implementation of a full
frequency-dependent model for transmission lines and cables in a
state-space-based solver for electromagnetic transients. This im-
plementation is for real-time simulation of power system switching
transients. It is based on the wideband universal line model with
modifications being incorporated to meet the computational speed
requirements of real-time applications. The real-time perfor-
mance of the implementation is demonstrated through application
examples.

Index Terms—Cables, real-time simulation, transients, trans-
mission lines, wideband (WB).

I. INTRODUCTION

A N electromagnetic disturbance occurring at one end of a
transmission line reaches the other end after a time delay.

This is due to the travel time of electromagnetic waves and the
two ends are said to be decoupled in time. This delay effect has
been conveniently applied in the partitioning of large power net-
works for parallel and real-time simulations of electromagnetic
transients (EMTs).

Most line models adapted for real-time simulation of EMTs
are based on [1] (see [2]–[4]). Frequency-dependent line (FD-
Line) models [1] are especially important in real-time simula-
tions due to their good numerical performance and accuracy
when dealing with symmetric and nearly symmetric overhead
lines [5]. Although these lines are very common, there are many
cases involving highly asymmetric overhead lines as well as un-
derground and submarine cables, which cannot be simulated re-
liably with the FD-Line approach. These cases require that a
full-frequency-dependent line model be implemented for real-
time simulations.

The main purpose of this paper is to present a full-frequency-
dependent model for lines and cables that executes in real time.
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The model is targeted for a hardware platform based on clusters
of conventional multicore processors. In this paper, the model
is implemented into the state-space-based power system simu-
lation environment of Simulink [6] used for real-time computa-
tions in [7].

The model reported here is based on the principles of the
wideband (WB) or universal line model (ULM) [8]–[11] with
various modifications to attain the computational speed required
in real-time applications. This model is called real-time wide-
band (RTWB). It is implemented and tested in the RT-LAB soft-
ware platform [7].

An important modification introduced in RTWB consists in
the handling of all internal state variables of the model by pro-
cedures in real arithmetic. In standard WB line/cable model
implementations in EMT-type programs, all state variables are
treated as complex. It is shown in this paper that through the
use of real arithmetic processes, a large number of trivial and
redundant computations are eliminated. Additional computa-
tional speed improvements for updating internal state variables
are also presented.

The computational speed improvements presented in this
paper for real-time simulations, can be also reused for offline
simulation tools.

This paper also demonstrates that it is possible to include
ULM equations into a state-space-based formulation through
the usage of the interface proposed in [12].

An additional contribution of this paper is the identification of
conditions for instability due to modal grouping normally used
for computational efficiency.

A major motivation to pursue real-time simulation of tran-
sients is to conduct hardware-in-the loop (HIL) simulations for
testing external physical components, such as control systems.
This paper focuses on the real-time simulation of switching tran-
sients involved in HIL applications.

II. WB MODEL EQUATIONS

A. Main Line/Cable Model Equations

Fig. 1 depicts a power transmission line of length L formed by
parallel conductors. This multiconductor representation can

represent an aerial line or an underground or submarine cable.
The steady-state line-end current and voltage phasors are re-

lated as follows [8]:

(1)

(2)

where and are the vectors of injected currents, and
and are nodal voltage vectors. The subscript 0 is used for
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Fig. 1. Multiconductor line segment of length �.

variables at 0 and the subscripts L stands for variables at
. The characteristic admittance matrix is given by

(3)

with , , and are -coupled matrices per unit
length representing shunt admittances and series impedances, re-
spectively. These two matrices can be obtained with the line and
cable constants utilities available in electromagnetic-transient
(EMT)-type programs. is the propagation matrix given by

(4)

In (1), the term is considered as a shunt current

(5)

whereas the right-hand side is denoted by

(6)

where is the forward traveling current-wave vector from
the L side. The time-domain versions of (1), (5), and (6) result
in

(7)

(8)

(9)

where the lowercase variables represent the time-domain ver-
sions of their uppercase counterparts and the symbol indicates
convolution. Equations (7)–(9) provide the time-domain model
of the line at . They can be directly inserted into a nodal
analysis formulation of the main network equations.

Expressions similar to (5)–(9) can be written for the right-
hand side by interchanging subscripts 0 and L.

B. State-Space Form for Characteristic Admittance Matrix

The convolutions in (8) and (9) are carried out conveniently
through the state-space relations that arise when matrices
and are represented by rational functions [13]. A state-space
form for (8) is derived next by means of the following rational
representation [8]:

(10)

where is the order of the fit, represents the th fitting pole,
is the corresponding matrix of residues, and is a constant

matrix obtained at the limit of when . The
poles of are obtained by applying the (vector fitting) VF
technique [14] to the trace of [10]. The VF variant developed
in [15] and [16] is used in this paper.

When (10) is introduced into (5), then (11) is obtained

(11)

This equation can be now written in time domain using the in-
verse Laplace transform

(12)

(13)

The trapezoidal integration method is applied to (13) to obtain

(14)

where hatted variables result from the disctretization process
and primed variables denote their past values found at the pre-
vious timepoint . It is possible to introduce (14) into
(12) directly, but since saving computing time is a key factor in
real-time programming, a more efficient approach is based on a
change of variable. By realizing that, the history part in (14) is
given by

(15)

it is possible to introduce a new variable

(16)

(17)

Finally (12) is rewritten as

(18)

where the constant matrix is given by

(19)

It is shown in Appendix A that the aforementioned approach re-
duces the number of floating-point multiplications and additions
by nearly half in the time-domain solution loop of the model.

C. State-Space Form for Propagation Matrix

To attain an accurate and compact (low order) rational rep-
resentation for a matrix function of s, it is essential to factor
out all terms involving time delays [1]. The major difficulty
with is that its elements usually involve a mix of different
delay terms due to multimode propagation on an -conductor
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line [17]. The separation of in single-delay terms is obtained
through modal factorization [17]

(20)

where is the matrix of eigenvectors of the product in (4)
and is a diagonal matrix of the form

(21)

with being the modal propagation constant [17].
It can be shown that (20) can be written as

(22)

where is the rank-1 matrix obtained by premultiplying the
th column of by the th row of . is, in fact, idempotent

[18]. Equation (22) can be further decomposed to give

(23)

where is the time delay associated with the velocity of the
th mode and is the th modal propagation constant being

modified by the delay subtraction. The time delays in (23) can
be initially estimated by applying Bode’s relation for minimum
phase complex functions [19] to the modal exponential factors
in (21). Although (23) provides the desired separation of as a
sum of terms, each one involving a single delay factor, the fol-
lowing consideration is brought in for computational efficiency
[8]. Modal delays often occur in groups with almost identical
values and whether a set of exponential factors can be grouped
or not is determined by comparing the phase shifts associated
with their time delays. The set is a delay group if the phase-shift
differences are below a pre-established value, typically chosen
at 10 at high frequencies [8]. This is the delay grouping method
used in standard WB model implementations in EMT-type pro-
grams. Nevertheless, an example in Section V-B shows that de-
spite the associated phases of two modal propagation constants
being almost identical, their magnitudes can be quite apart, and
grouping these constants stiffens the fitting process. This results
in poor fitting and, consequently, causes numerical instability
problems in the time domain. The number of total poles is not
necessarily reduced either with the standard grouping method.
The notation that will be used is simplified by not showing delay
grouping.

Each term in (23) can now be fitted as follows:

(24)

where is the order of the fit for the th term ; repre-
sents its th fitting pole and is a matrix of residues deter-
mined by a fitting process (see [10] and [13]–[16]). The matrices

are obtained from by a modal decomposition as in (20). It
is required that through all of the frequencies being considered
in the fitting process, the transformation matrix preserves the
same eigenvector (column) order. Since the diagonalizing pro-
cedures used to obtain the matrices cannot guarantee this,

Fig. 2. Discrete time-domain circuit representation of a multiconductor line.

a subsequent reordering process must be employed. The latter
process is usually based on the mode tracking by the correlation
method described in [22].

Equation (24) is combined with (23) and inserted into (6) to
give

(25)
where

(26)

The inverse Laplace transform is applied to (25) and (26) to give

(27)

(28)

At this stage, the above equation is discretized directly using the
trapezoidal integration rule

(29)

where the primed and hatted notations are similar to (14).
Hence, (29) provides the update of state vectors using only
past values of variables already available, either from initial
conditions or from previous simulation timepoints.

D. Complete Model

The equivalent circuit model shown in Fig. 2 results from the
introduction of (18) and (27) into (7). The matrix is given by
(19) and the history current is the combined equation

(30)

A similar equation can be written for .

III. STATE-SPACE ANALYSIS WITH REAL ARITHMETIC

Since VF is applied to obtain rational approximations of
and , some of the fitting poles can be complex. These poles
and their associated state variables come in conjugate pairs. The
imaginary parts of the state variables must cancel (each other) at
the sums in (30). In a direct implementation of the WB model,
as described in the previous section, all internal state variables
are treated as complex including those that are real. This ap-
proach is, in fact, the one adopted in standard implementations
of the WB model in EMT-type programs. From the standpoint of
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computational efficiency for a real-time code, however, this di-
rect approach introduces a large number of trivial and redundant
computations [20], even if a given fitting is achieved without
complex poles.

In these authors’ experience, complex poles arise less fre-
quently in the fitting of than in the one of . For the two test
cases shown in Section V, one for an underground cable and the
other for an aerial line, the two admittance matrices were fitted
with real poles only. As for the propagation matrices, 20% of
the poles were complex for the underground cable, while for
the aerial line, only two out of 30 poles (7%) were complex.

Thus, the handling of the real variables as complex variables
will increase the number of sums at least by a factor of two and
the number of real multiplications by a factor of four. In addi-
tion, all of the added sums and multiplications are trivial; that
is, sums of zeros and multiplications by zeros. For the case of
complex state variables, the two states from a conjugate pair
convey the same information and the computation of these two
is redundant. In the WB model implementation reported here,
redundant states are eliminated and each remaining complex
state is handled as a pair of coupled real states. The proposed
modification enables achieving a typical gain of at least two in
computational speed. It can equally impact real-time and offline
implementations.

Assume that two fitting poles in (11) or in (25) are com-
plex conjugates. This means that and

, using subscripts for real and for imaginary parts.
The generic letter is used here to designate an arbitrary pole.
The contribution of those complex poles to the output equation,
either (11) or (25), is given in generic terms as

(31)

where

(32)

where is a member of in (11) or a member of in (25), and
in (11) or in (25). The application

of the inverse Laplace transform to (31) and (32) yields

(33)

(34)

(35)

Consideration is made now as to the fact that

(36)

On introducing (36) into (33)

(37)

The replacement of (36) into (34) results into the following pair
of coupled differential equations:

(38)

The same equation is obtained when replacing (36) into (35). It
is thus clear that (35) is redundant, and (37) and (38) are suffi-

cient to determine the output . In addition, the state vectors
and are real.

At this stage, trapezoidal integration is used again to dis-
cretize (38)

(39)

(40)

The coefficients , , , and are given by

(41)

(42)

(43)

(44)

with .
Due to computational speed issues explained before for the

programming of (13), a change of variable is also introduced in
(39) and (40). The state variables are redefined as follows:

(45)

(46)

The introduction of (45) and (46) into (37), (39), and (40) gives

(47)

(48)

(49)

where and .
On the basis of (47)–(49), (18) and (19) are modified as

follows:

(50)

(51)

For the case of complex poles in (27), the input is an already
determined historic value; thus, (27) can be directly modified as
follows:

(52)

where and are the number of real and complex poles,
respectively.

As a final step, the history parts of (50) and (52) are combined
to create an improved version for the history current of (30)

(53)
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IV. MODEL IMPLEMENTATION IN A REAL-TIME PLATFORM

The WB cable/line model described in Section II with the
modifications described in Section III is coded in C language
and implemented as an object in the RT-LAB platform [7]
(eMEGAsim simulator) for its execution in real time. This
constitutes the RTWB line and cable model. Two sub-blocks
are used: one for each line/cable end. Each sub-block can be
executed in parallel on a different processor of PC-cluster-based
hardware. The sub-blocks create natural-network decoupling
due to propagation delay between both ends.

The RT-LAB platform is based on the SimPowerSystems
toolbox of Simulink [6] and employs a state-space formula-
tion for network equations. The RTWB model, on the other
hand, has a nodal formulation. The interfacing of RTWB with
RT-LAB is through the state-space nodal (SSN) solver de-
scribed in [12]. With this approach, the nodal model presented
in Fig. 2 can be directly and simultaneously interfaced with the
network-state equations using an SSN V-type group [12]. It
means that the Norton model of Fig. 2 is directly mapped into
the nodal equations of the corresponding nodal group.

The trapezoidal numerical integration method is used in the
RTWB model. Network-state-space equations have been also
discretized using trapezoidal integration for the presented tests,
but other available solution methods can be used since there are
no imposed limitations from the RTWB model side.

It is emphasized that inserting the WB model-state equations
directly into the network-state equations was not realizable
without the SSN method due to the resulting large number of
states.

The time-domain solution steps are identical for both sub-
blocks, and only the code steps for the 0 side are given
below as follows.
Step 1) SSN uses history currents (see Fig. 2) known either

from initial conditions or from previous simulation
steps to determine network voltages .

Step 2) Calculate with (50) and save the history part
separately.

Step 3) Calculate with (52).
Step 4) Calculate from the combination

of (7) and (8), deliver to the side.
Step 5) Update internal model states.
Step 6) Calculate using (53).
Step 7) Go back to Step 1) until the end of the simulation

time.
In the update Step 5), (17) and (29) are used for real states.

For a given complex state, it is necessary to use (48) and (49)
for and (39) and (40) for .

A key aspect in the development of the RTWB model is the
improvement of numerical performance with respect to the orig-
inal ULM. The model execution time is a critical aspect of real-
time simulations for the reason that the simulation process is
interfaced with real-world devices through analog and digital
converters. These converters and the simulation process driving
them are controlled by a real-time clock inside the simulator,
it is therefore very important that the calculations of the net-
work solver and in the models be completed at every time step
of the simulator. For this reason, in real-time simulation, the

Fig. 3. Underground cable layout for Case 1.

Fig. 4. Case 1 test circuit.

time step is measured as the worst case calculation time for all
time steps. Once this worst case time step is known, it is possible
to complete all computations in real time and the interface with
real-world devices is not disrupted. The RTWB cases presented
in the following section were simulated with the real-time clock.

As a byproduct of the aforementioned programming, it was
also possible to implement the offline version of the RTWB
model into the SimPowerSystems toolbox of Simulink [6] using
again the SSN interfacing approach. The code behind each sub-
block is an -function [6] coded in C language.

V. NUMERICAL PERFORMANCE OF RTWB IMPLEMENTATION

The RTWB model has been tested extensively against the
offline WB model version available in EMTP-RV [21]. The
comparisons included long-term numerical stability and low-
frequency performance. The model showed no sign of insta-
bility for up to 600 s of simulation time and being excited with
steps and sinusoidal functions. In all of these tests, the RTWB
model has given accurate results. Real time was achieved using
eMEGAsim [7] with two six-core processors (3.33 GHz, Xeon
X5680) with a 12-MB L3 cache on each processor.

Two test cases are presented below.

A. Underground Cable, Case 1

The underground cable system used in this test is taken from
[15] (see the case shown in Fig. 1, only the left-hand side, with
an earth resistivity of 100 m). The cable system layout is
shown in Fig. 3. The corresponding electrical circuit diagram
is shown in Fig. 4. The circuit parameters are:

• cable length: 15 km;
• cable sheaths are grounded by 1- resistance at both ends;
• ac source AC1: Y-grounded, 169 kV;
• R1 is 1 k ;
• RL1 is determined by its zero-sequence (0) and positive-

sequence (1) data in ohms: 2, 1, 22, and
15;
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Fig. 5. Core voltages (bus in Fig. 4), Case1, phase-a is red,
phase-b is blue, phase-c is green, dashed line is EMTP-RV, solid is eMEGAsim.

Fig. 6. Sheath voltages (bus in Fig. 4), Case 1, phase-a is red,
phase-b is blue, phase-c is green, dashed line is EMTP-RV, solid is eMEGAsim.

• switch SW1 closing times are: 0 s on phase-a, 0.63 ms on
phase-b, and 0.4 ms on phase-c.

In this case, the fitting of requires 14 real poles and no
complex poles, while the fitting of requires 30 real poles and
6 complex poles. No delay grouping is needed for .

Simulation results are presented in Fig. 5. A dashed line
is used for EMTP-RV waveforms and a solid line is for
eMEGAsim results. The observed minor differences are re-
lated to the different numerical integration techniques used in
EMTP-RV and eMEGAsim. The achieved smallest real-time
integration timestep is 12 s.

This test case is presented without cross-bonding. The reason
is that the non-cross-bonded cable poses a more stringent test on
the stability of the RTWB model. Nevertheless, the tests were
repeated with cross-bonding and the real-time performance of
the model has remained equal.

B. Transmission Line, Case 2

The geometry of this test case is shown in Fig. 7. Conductor
data can be found in [18] (see Fig. 6). There are three coupled
transmission lines. Circuit 1 is composed of conductors 1 to 3,
Circuit 2 is for conductors 4 to 6, and Circuit 3 uses conductors
7 to 9. The line length is 150 km.

In Case 2, the fitting of requires 9 real poles and no com-
plex poles, while the fitting of requires 28 real poles and 2
complex poles without delay grouping.

The magnitudes of and related phase angles are shown
in Figs. 8 and 9. These results are internal to the vector fitting

Fig. 7. Transmission-line configuration, Case 2.

Fig. 8. Magnitudes of� , 9 modes, test Case 2.

Fig. 9. Phase angles of� , 9 modes, test Case 2.

process. The time delay printouts are listed in Table I. It is ap-
parent that although the phase angles are overlapping, the mag-
nitudes are evidently apart. If modes 1–3 are grouped according
to the standard procedure explained in Section II-C, then the
solution in time domain becomes numerically unstable. Thus,
delay grouping must be turned off in this case.

Since delay grouping was essentially used for computational
speed purposes, a more systematic approach must be developed
with automatic validation for the grouping criterion. This is to
avoid potential numerical stability problems.

The transmission line is energized on Circuit 1 (see Fig. 7)
using the same network-side equivalent as in Fig. 4 and the
same switch closing timings, except now the system voltage is
230 kV. Simulation results for the receiving end voltages of Cir-
cuit 1 are presented in Fig. 10. The simulation waveforms are
undistinguishable when comparing EMTP-RV (dashed line) and
eMEGAsim (solid line). The lowest achievable real-time time
step in eMEGAsim was 20 s.
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TABLE I
MODAL TIME DELAYS

Fig. 10. Circuit 1 receiving end voltages, Case 2 (Fig. 7), phase-a is red,
phase-b is blue, phase-c is green, dashed line is EMTP-RV, solid is eMEGAsim.

C. Offline Performance

The standard ULM of EMTP-RV has been used in the pre-
vious test cases to validate the results from the RTWB model.
Then, the ULM model code of EMTP-RV was upgraded (ULM-
new) to include the numerical performance improvements found
in this paper for the RTWB model.

For the simulation of Case 1, the standard ULM was executed
in 2263 ms, while ULM-new used only 410 ms. For Case 2,
the execution time with the standard ULM code was 781 ms
and down to 110 ms with the ULM-new version. These offline
results imply an increase in numerical performance between 5
to 7 times.

VI. CONCLUSION

An implementation of a model for real-time simulation of
electromagnetic transients in power system lines and cables
has been presented in this paper. The implementation has been
based on the ULM WB model as originally described in [8]
and with improvements presented in [15] and [16]. Modifica-
tions have been incorporated to attain and optimize real-time
performance. One of these modifications has been the handling
of complex poles and complex state variable equations by
procedures in real arithmetic. The proposed modifications also
enable increasing the computational speed in offline simulation
methods.

The new real-time wideband (RTWB) model has been imple-
mented in a state-space solver using the SSN interfacing method
proposed in [12]. The state-space solver can be used in the of-
fline mode directly within Simulink (SimPowerSystems) and in
the real-time mode version in eMEGAsim.

One more contribution is the elimination of numerical
stability problems for a practical line energization case. The
instability resulted from the propagation matrix modal delay
grouping used in the standard vector fitting approach. It should
be pointed out here that further research on this topic is being
conducted by the authors.

The presented new RTWB model extends the application
range of real-time simulation tools for simulation cases re-
quiring wideband line and/or cable models. This is the case, for
example, in offshore grid simulation and analysis of EMTs.

APPENDIX A
NUMERICAL PERFORMANCE, STATE SPACE METHODS

Equation (12) has a dimension of and can be evaluated
using two different methods.

In Method 1, (14) is directly replaced into (12) to give

(54)

with the matrix given by (19) and . Equa-
tion (14) is now written as . The following
solution steps are applied at each simulation timepoint and for
both sides of the line. Only the left-hand side is shown
here

1) evaluate for all ;
2) evaluate in (54);
3) provide the history currents of (30) to the network solution

to find ;
4) update for all ;
5) prepare for the next timepoint and .
The number of multiplications and additions per timepoint

are given by the same count .
In Method 2, (18) is rewritten as

(55)

where is a precalculated term. The aforemen-
tioned solution steps are now modified to become:

1) evaluate (17), for all ;
2) evaluate in (55);
3) provide the history currents of (30) to the network solution

to find ;
4) prepare for the next timepoint and .
The number of multiplications and additions per time-

point are given by the same count . The
gain in the number of operations compared to Method 2 is

.
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