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Abstract—This paper presents a set of rotating machine models, namely synchronous, asynchronous and permanent magnet 
synchronous machines, with increased stability characteristics compared to traditional state-space based methods. In this work, the 
machine models are all derived using the state-space-nodal (SSN) theory. This results in machine models that are stable without any 
parasitic load or numerical snubber. This is an important improvement for these models in solver packages based on the state-space 
approach, such as SimPowerSystems or PLECS.  

Index Terms—Hardware-In-the-Loop simulation, State-Space-Nodal, SSN, SimPowerSystems, Synchronous machine, induction 
machine, PMSM. 

I. INTRODUCTION 

Real-time simulation is an important part of power system and industrial drive development as it enables engineers to test system 
controllers in the lab before field commissioning. The availability of accurate rotating machine models is also important in this 
regard.  

A lot of work has been done over the years to achieve real-time capable rotating machine models. A good explanation of 
synchronous machine (SM) modeling theory is provided in [4]. In [5], various SM models, so-called dq0, VBR, PM, PM-dq0 are 
discussed and compared extensively. 

Permanent magnet synchronous machine (PMSM) models are simpler than SM typically, because they involve less windings. 
This relative simplicity makes it possible to run PMSM drive models on FPGA chips, together with full non-linear inductances 
profile in the phase domain [6]. 

As for induction motor (IM) models, including doubly-fed types, many models exists in the literature; the most common again 
makes use of Park’s transform [4]. They can also be implemented on FPGA. 

In this paper, we derive SM, IM and PMSM models directly from their state-space equations using the SSN methodology. This 
results in a systematic way of deriving rotating machinery models compatible with simulation software based on the nodal 
admittance approach. These models turn out to be more robust and stable than the one using the current injection with delay method, 
commonly used in state-space simulation packages such as PLECS and SPS. 

 

II. STATE-SPACE-NODAL (SSN) THEORY 

The State-Space-Nodal solver [1] is a nodal admittance solver in which the branch discrete companion model (DCM) equations 
are directly derived from their state-space equations. 

Suppose there is a group of resistance, inductance, capacitance, switches and transformer sources, and other electrical elements 
(i.e. a generalized branch or SSN group) connected to a terminal of unknown voltage and current (a ‘nodal connection point’). The 
state-space equation usually exists:  

                                                                   
ᇱݔ									 ൌ ݔ௞ܣ ൅ 	ݑ௞ܤ
ݕ									 ൌ ݔ௞ܥ ൅ ݑ௞ܦ

                              (1) 

where 
  x: states of the system 
  u: inputs of the system 
  y: output of the system 

  Ak , Bk , Ck , Dk : state space matrices corresponding to the k-th permutation of switches and other piecewise linear element 
segments. 
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When discretized, these equations result in: 

                                                
௡ାଵݔ ൌ ௡ݔௗܣ ൅ ௡ݑௗଵܤ ൅ ሾܤௗଶሺ௜௡ሻ ௗଶሺ௡௢ሻሿܤ ൤

௡ାଵሺ௜௡ሻݑ
௡ାଵሺ௡௢ሻ൨ݑ

൤
௡ାଵሺ௜௡ሻݕ
௡ାଵሺ௡௢ሻ൨ݕ ൌ ൤

ሺ௜௡ሻܥ
ሺ௡௢ሻܥ

൨ ௡ାଵݔ ൅ ൤
ሺ௜௡,௜௡ሻܦ ሺ௜௡,௡௢ሻܦ
ሺ௡௢,௜௡ሻܦ ሺ௡௢,௡௢ሻܦ

൨ ൤
௡ାଵሺ௜௡ሻݑ
௡ାଵሺ௡௢ሻ൨ݑ

							                                          (2) 

where:  
 are the discrete state matrices for the present pattern of binary switches modeled inside the group (switch ܦ , ܥ ,ௗଶܤ ,ௗଵܤ,ௗܣ

pattern index k is not shown); 
 ሺ௜௡ሻ: internal sources of the state-space model. Like in standard state-space modeling, these include known forced sources andݑ

sources from non-linear current injections.  
 unknown sources of the state-space model at the present time n+1. This represents the nodal voltages or the current	ሺ௡௢ሻ:ݑ

injection that can only be resolved by simultaneous solution of all groups connected to the nodes of the network.   
 ;ሺ௜௡ሻ: internal outputs of the model. These are usually current and voltage measurements to be taken inside the groupݕ
 ሺ௡௢ሻ: nodal outputs of the state-space model. These are the voltage or current outputs of the group that need to be solvedݕ

simultaneously along with all other groups of the system. 
The trapezoidal rule of integration will produce ܤௗଵ ൌ  ௗଶ while most other discretization methods will produce different discreteܤ

 .matrices.  Subscript n and n+1 indicate the time instants separated by the discretization time step	ௗܤ
Equation 2 can be written in the following way: 

                                                           

												
௡ାଵሺ௡௢ሻݕ ൌ ௡ݔௗܣሺ௡௢ሻሼܥ ൅ ௡ݑௗଵܤ ൅ ௡ାଵሺ௜௡ሻݑௗଶሺ௜௡ሻܤ ൅ ௡ାଵሺ௡௢ሻሽݑௗଶሺ௡௢ሻܤ ൅ ௡ାଵሺ௜௡ሻݑሺ௡௢,௜௡ሻܦ ൅  ௡ାଵሺ௡௢ሻ        (3)ݑሺ௡௢,௡௢ሻܦ

which can be grouped into implicit and explicit terms. The explicit part refers to known values at the current time step in Eq. 3, 
including internal source values at instant n+1. This is a ‘history term’ in EMTP jargon. 

                                     
௛௜௦௧ݕ ൌ ௡ݔௗܣሺ௡௢ሻሼܥ ൅ ௡ݑௗଵܤ ൅ ௡ାଵሺ௜௡ሻሽݑௗଶܤ ൅  ௡ାଵሺ௜௡ሻ                                                   (4)ݑሺ௡௢,௜௡ሻܦ

The other terms compose the implicit part, which contains the terms in n+1 linked to nodal quantities, not solvable a priori from 
the equation alone. With voltage components in inputs u and current components in the corresponding outputs y, the implicit relation 

                                                       ܹ ൌ ௗଶሺ௡௢ሻܤሺ௡௢ሻܥ ൅  ሺ௡௢.௡௢ሻ                                                                                        (5)ܦ

has an admittance unit if ݑ௡ାଵሺ௡௢ሻ is a voltage source, which is the case for machines models, and corresponds to the ‘discrete 
admittance’ term in EMTP jargon, therefore resulting in a Norton-type DCM. SSN also allows to derive Thevenin-type DCM if the 
nodal inputs are currents and outputs are voltages in Eq. 2. In that case ܹ represent an impedance. 

The various sets of SSN-derived DCM are then assembled to form a nodal admittance problem, which solution is used to complete 
the implicit part of DCM equations at each time step. 

 

III. SSN FOR ROTATING MACHINES 

Rotating machines such as synchronous machine, asynchronous machine and permanent magnet machine can be described with 
state-space equations and therefore can be derived from and included in the SSN solution. Because of the inductive nature of 
common rotating machines, they will result in Norton-type DCM with voltage sources as inputs. 

 

A. Synchronous machine 

The SSN model of the Synchronous machine (SM) is similar to the one from SimPowerSystems (SPS) and EMTP-RV: the 
electrical part is represented by a fifth-order (salient rotor) or sixth-order (round rotor) state-space model. The model takes into 
account the dynamics of the stator, field, and up to 3 damper windings. The equivalent circuit of the model is represented in the 
rotor reference frame (dq0 frame). All rotor parameters and electrical quantities are viewed from the stator. The quote sign (‘) refers 
to rotor quantities.  
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The following Park transformation used to express all quantities in the reference frame attached to rotor, where ߠ is the rotor 
angle, is given by: 

                                                                  ܶ ൌ ܵ.ටଶ

ଷ
. ൤
1 െ1/2 െ1/2

0 √3/2 െ√3/2
൨                     (6a)  

where 

                                                                        ܵ ൌ ൤
cos	ሺߠሻ sin	ሺߠሻ
െsin	ሺߠሻ cos	ሺߠሻ൨                           (6b) 

The machine equations are then equal to (^ indicates time derivative):  

                     ෡߰ ൌ ሺെܴିܮଵ ൅ Ωሻ߰ ൅ ൤ ௗܸ௤௙

૙ଷ
൨                 (7a) 

ௗ௤௙ܫ	                   ൌ ௥௢௪ሻ	ଷ	ሺ௙௜௥௦௧ܮ
ିଵ ߰	                           (7b) 

with ௗܸ௤௙ ൌ ൣ ௦ܸௗ	 ௦ܸ௤	 ௙ܸ	൧
௧
,  ߰ ൌ ൣ߰௦ௗ	߰௦௤	߰′௙	߰′௞ௗ	߰′௞௤ଵ߰′௞௤ଶ൧

௧
ௗ௤௙ܫ ,  ൌ ൧	௙′ܫ	௦௤ܫ	௦ௗܫൣ

௧
, ܴ ൌ ݀݅ܽ݃ሺܴ௦, ܴ௦	, ܴ′௙, ܴ′௞ௗ, ܴ′௞௤ଵ, ܴ′௞௤ଶሻ 

Indices kd, kq1 and kq2 correspond to dampers along d and q. 

Ω ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 ߱௘ 0 0 0 0

െ߱௘ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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ۑ
ۑ
ۑ
ۑ
ې

  ‘speed term’   and      ܮ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ௗܮ 0 ௠ௗܮ ௠ௗܮ 0 0
0 ௤ܮ 0 0 ௠௤ܮ ௠௤ܮ

௠ௗܮ 0 ௙′ܮ ௠ௗܮ 0 0
௠ௗܮ 0 ௠ௗܮ ௞ௗ′ܮ 0 0
0 ௠௤ܮ 0 0 ௞௤ଵ′ܮ ௠௤ܮ

0 ௠௤ܮ 0 0 ௠௤ܮ ے௞௤ଶ′ܮ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

In the inductance matrix ܮ௠ௗ represents the d-axis mutual inductance and ܮௗ, ,௙′ܮ  ௞ௗ are the sum of each winding leakage and′ܮ
mutual inductance (same for q-axis). ߱௘ is the electric pulsation frequency in rad/s. 
Using the following Park transform, 

                                                ௗܸ௤௙ ൌ ൤
ܶ ૙૛
૙ଷ
௧ ݂݊/ݏ݊

൨ ௔ܸ௕௖௙    ܫ௔௕௖௙ ൌ ൤
ܶ௧ ૙ଷ
૙ଶ
௧ ݂݊/ݏ݊

൨   ௗ௤௙       (8)ܫ

where ௔ܸ௕௖௙ is the vector of machine terminal voltage to ground (including the field terminal) and ܫ௔௕௖௙ is the vector of current 
entering the terminals.  
 

The SSN equations of the synchronous machine are found by combining Eq. 8 with Eq. 7, thus obtaining the phase domain state-
space equations of the SM. Discretizing with trapezoidal rule of integration results in an equation in the form Eq. 2, from which the 
Norton-type SSN DCM is derived from Eq. 4 and 5. In Eq.8, the ݊ݏ/݂݊ term is the stator coil to field coil turn ratio; this term is 
required to obtain the proper SSN admittance from the physical field coil terminals. With the nominal field current known ݅௙௡, one 
can obtain this turn ratio by using the following formula: 

ݏ݊			                    ݂݊⁄ ൌ /௠ௗ݅௙௡߱௕௔௦௘ܮ ௕ܸ௔௦௘                (9) 

where  ߱௕௔௦௘ is the base electric frequency in rad/s and ௕ܸ௔௦௘ is the nominal line-to-line RMS voltage of the machine. 
 

The synchronous machine zero-sequence equations are treated similarly. The SSN equations for the zero-sequence are similar to 
d-q ones, except that: 

                 ෡߰ ൌ ሺെܴ଴ܮ଴ିଵሻ߰ ൅ ଴ܶ ௔ܸ௕௖௡                        (10a)                                                                       
௔௕௖௡ܫ	                        ൌ ܶ′଴ܮ଴ିଵ߰                                      (10b) 

with ଴ܶ ൌ ටଵ

ଷ
. ሾ1	1	1 െ 3ሿ . ܴ଴ is equal to the stator resistance, ܴ௦ while ܮ଴ is equal to the stator leakage inductance ܮ௟௦ ൌ ௗܮ െ

 :௠ௗ. The  ௔ܸ௕௖௡ vector includes the neutral to ground voltage. Electric torque is given byܮ

                                                                                   	 ௘ܶ ൌ .݌݌ ሺ߰ௗ݅௤ െ ߰௤݅ௗሻ                  (11)   

where pp denotes the number of poles pairs.  . 
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B. Asynchronous machine or induction machine 

An induction machine (IM) model with fixed d-q (Park) referential can be used to obtain the SSN equations. The Park 
transformation used to express all quantities in the reference frame attached to the stator is given as in eq. 6 with ߠ ൌ 0 for stator 
quantities and ߠ ൌ െߠ௥௢௧௢௥ for rotor quantities. It leads to the following relations 

                                                     					 ௗܸ௤௦ ൌ ܶ. ௔ܸ௕௖௦                   ܫ௔௕௖௦ ൌ ܶ௧.  ௗ௤௦               (12a)ܫ

                                                    	ܸ′ௗ௤௥ ൌ ݏ݊ ⁄ݎ݊ ܶ. ௔ܸ௕௖௥        ܫ′௔௕௖௥ ൌ ݏ݊ ⁄ݎ݊ ܶ௧.        ௗ௤௥      (12b)ܫ

The stator to rotor turn ratio ݊ݏ ⁄ݎ݊  is required in Eq. 12b to pass the rotor voltages and currents to and from the stator point of 
view. Additionally, indices s and r correspond to stator and rotor entities, respectively, with primed rotor variables being referred 
to the stator). The machine equations are then equal to: 

                                                               											෡߰ ൌ ሺെܴିܮଵ ൅ Ωሻ߰ ൅ ௗܸ௤                             (13a) 
ௗ௤ܫ	                                                                                 ൌ  ଵ߰                                             (13b)ିܮ

with ௗܸ௤ ൌ ൣ ௦ܸௗ	 ௦ܸ௤	ܸ′௥ௗ	ܸ′௥௤൧
௧
 , ߰ ൌ ൣ߰௦ௗ	߰௦௤	߰′௥ௗ	߰′௥௤൧

௧
 ,  ܴ ൌ ݀݅ܽ݃ሺܴ௦, ܴ௦	, ܴ′௥, ܴ′௥ሻ,  Ω ൌ ൦

0 0 0 0
0 0 0 0
0
0

0
0

0 െ߱௘
߱௘ 0

൪  ‘speed term’                 

where ߱௘ is the electric frequency of the rotor given by: 
߱௘ ൌ ௦ܮ ௠ and ߱௠ is the rotor speed in rad/s. Also note that߱.݌݌ ൌ ௠ܮ ൅  ௦௟ is the stator leakageܮ ௦௟ (similarly for rotor), whereܮ
inductance. 

ଵିܮ                                                                    ൌ ଵ

௅ᇱೝ௅ೞି௅೘
మ ൦

௥′ܮ 0 െܮ௠ 0
0 ௥′ܮ 0 				െܮ௠

െܮ௠
0

0
െܮ௠

௦ܮ 		0
0 ௦ܮ					

൪              

with ܴ௦, ,௦ܮ ܴ′௥	, ,௥′ܮ  ௠ being the stator resistance and inductance, the rotor resistance and inductance referred to the stator andܮ
mutual inductance.  Electric torque is equal to: 

                                                                           	 ௘ܶ ൌ .݌݌ ሺ߰ௗ݅௤ െ ߰௤݅ௗሻ,                         (14) 

with the absence of scaling factor due to the use of orthonormal Park transformations. 

The SSN discrete companion model equations are obtained from the phase-domain equations of the IM, obtained again by 
combining Eq. 12 and 13, resulting in a time-variant phase-domain model for the IM with ܸ ௔௕௖	as input and ܫ௔௕௖ as outputs. (Variant 
because of matrix S for the rotor, speed terms and saturation effects in matrix L). Once discretized, it produces a discrete equation 
in the form of Eq 3, from which the DCM is obtained readily by Equations 4 and 5. During the SSN solution, terms 4 and 5 are 
included in the nodal admittance solution. Because the DCM is time-variant, it requires SSN to re-factorize the nodal admittance 
matrix at each time step. 

C. Permanent magnet synchronous machine (PMSM). 

The SSN PMSM model is derived from the classic d-q model using Park transformation, but this time with  ߠ ൌ  ௥௢௧௢௥ , i.e. theߠ
reference frame is attached to the rotor, yielding: 

                                                                ෡߰ ൌ ሺെܴିܮଵ ൅ Ωሻ߰ െ ߱௘Ψ൅ ܶ ௔ܸ௕௖               (15a) 
௔௕௖ܫ	                         ൌ ܶ௧ିܮଵ߰                                   (15b) 

 

with ൌ ൣ߰௦ௗ	߰௦௤	൧
௧
 ,  ܴ ൌ ݀݅ܽ݃ሺܴ௦, ܴ௦ሻ, ܮ ൌ ൤

ௗܮ 		0
		0 ௤ܮ

൨,  Ω ൌ ൤
0 ߱௘
െ߱௘ 0൨ ‘speed term’ and  Ψ ൌ ൥

0

ටଷ

ଶ
-൩  (back-EMF term on the qߣ

axis with the peak magnet flux  being on the d-axis), pp the number of pair of poles and ߱௘the electric pulsation frequency in 
rad/s. 

Electric torque is computed with the following formula 

      	 ௘ܶ ൌ .݌݌ ሼටଷ

ଶ
௘݅௤߱ߣ ൅ ሺܮௗ െ  ௤ሻ݅ௗ݅௤ሽ            (16)ܮ



Based on Electrimacs-2017 paper, “State-space-nodal rotating machine models with improved numerical stability” 

IV. ANALYSIS OF THE INSTABILITY OF DELAYED INJECTION METHOD USED IN SEVERAL SOFTWARE PACKAGES  

The so-called ‘delayed-current injection method’ (DCIM) is a commonly used simulation method for complex devices such as 
rotating machines. SimPowerSystems and PLECS notably use this method which is prone to numerical instability. DCIM for machine 
models uses the same machine equations described in the previous section, describing the machines as a state-space system with 
voltage inputs and current outputs. But, as the name say, DCIM alternatively compute the network machine terminal voltages, then 
computes the machine currents and uses these currents as injections to the next network solution, etc... A delay therefore exists 
between the network and the machine solutions and this delay is the main source of instability of this approach.  

In this section, we propose to explain mathematically the source of this instability using Bode frequency analysis. Instinctively, 
we know that connecting a current source to an inductive or high impedance circuit is looking for trouble. In real-life, this often 
triggers arcs. In simulation, instability results. 

Bode frequency analysis can be useful to understand the problem at stake. The method has been used already to study Power 
Hardware-In-the-Loop (PHIL) stability [14]. Alternately, z-domain stability analysis using Routh criteria can also be done for 
PHIL[13]. It is also possible to use pole analysis methods in multi-rate simulation systems[15]. 

Fig. 1  shows a simple grid-connected inductor simulated as a delayed current injection and the corresponding closed-loop 
diagram. Two closed loop diagrams are presented, one with a ideal integrator with delay, and one with a Forward Euler integrator. 

 
Fig. 1  Numerical stability test circuit and equivalent control diagrams  (T is sample time) 

For the purpose of this test, we set the grid inductance (L1) equal to the delayed inductance (L2, mimicking a machine inductance 
for example), both equal to 0.1 mH. We also set the grid resistance (R2) to have a quality factor of 20. The Bode analysis is made 
for snubber resistance (Rsnu) values of 6,8,10 and 12  with a sample time of 20 µs and depicted in Fig. 2 The figure shows that 
case with 6 and 8  have a positive gain margin at 180 degrees phase shift. The case with 10  has no gain margin and is marginally 
stable. Finally, the case with 12 is unstable because the open loop gain is greater than 1 at 180 degree of phase shift. These stability 
findings are fully supported by actual simulation of the case. 

Interestingly enough, changing the snubber from a resistance to a series RC snubber do not change the stability property of the 
circuit. This can be viewed in Fig. 3  where a 1 µF was added to the snubber of the previous case: it do not change the gain margin 
at 180 degrees phase shift. The usage of R-C snubber is however useful to obtain a higher impedance and lower power losses 
induced by the snubber at the main network frequency. 
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Fig. 2  Bode analysis of Forward Euler inductance coupled with trapezoidal integration of rest of network, case with simple R snubber 

 
Fig. 3  Bode analysis of Forward Euler inductance coupled with trapezoidal integration of rest of network, case with R-C snubber 

Integration by trapezoidal rule of both inductor L2 and the rest of the circuit produces a maximum phase shift of 90 degrees in 
Bode analysis (resistive snubber case) and is always stable therefore (result not shown). The problem of computing the model 
remains however because of the loop without delay induced by trapezoidal integration of both branches. This problem can be solved 
either by combining both branches before discretization or the use of an implicit solver method like nodal admittance method such 
as SSN. 
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V. EXAMPLE CASES  

In this section, we will highlight the accuracy of the SSN-derived machine model and in particular, their great numerical stability 
when connected to negligible loads or inductive-type elements, such as transformers, without any use of numerical snubbers. 

For each machine model type (SM, IM and PMSM), we will now describe such a case. 

A. Synchronous machine with field rectifier test case 

In this test case, we compare the SSN solver with the classic SPS at a very small simulation time step using a real life model of 
an SM with a field current rectifier, depicted in Fig. 4  The SM is connected to a main grid through a transformer and the field 
thyristor rectifier is also fed with a second transformer. In the test, we bring the SM terminal voltage to 1 pu by closed-loop control 
of the field current thyristor rectifier while driving the SM to 0.8 pu of the nominal power (202 MVA) through the closed-loop 
action of SM turbine and governor. Saturation was not considered in this test.  
 

From this stable operation point, the following actions are then made: 
-  At 11 sec. (on the graphs), a single-phase fault to ground is made; 
- 0.095 sec. after the fault, the field coil is short-circuited by the non-linear discharge resistance (Fig. 5 ; 
- 0.1 sec. after the fault, the SM stator breaker is opened and the field rectifier is opened; 
- 0.15 sec. after the fault, the fault is cleared. 
Fig. 6 Fig. 7 show the results; an excellent match is obtained between SPS 1µs and SSN 25µs. 

 
Fig. 4  Synchronous machine with field rectifier case 

 
Fig. 5  Non-linear discharge resistance characteristic 
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Fig. 6  SM voltages and currents 

 
Fig. 7  Field and non-linear discharge resistance currents (upper) 

Thyristor bridge firing angle (lower) 

1) Numerical stability comparison 

One main difference between the SSN and SPS simulations is that the former does NOT require any parasitic load at the MS 
terminal. By comparison, SPS requires a parasitic load of 5 MW (2.5% of nominal power) at 25 µs and even 200 kW at 1 µs. In the 
present test, made at 0.8pu of the rated machine power, the effect of this parasitic load is not critical but it may become important 
in cases where the SM is driven at lower power levels. 

The reason for this parasitic load requirement for SPS is the current injection with delay used, as well as other state-space-based 
simulation software such as PLECS. 
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2) Non-linear resistance iterations in real-time 

The real-time test model contains a non-linear resistance that was modeled using the MOV iterative model described in [3].  

B. Two asynchronous machines test case 

In this test, we compare the SSN asynchronous machine models, in squirrel-cage (IM) and wound-rotor doubly-fed (DFIM) 
configurations, against the standard SPS models. The test circuit is described in Fig. 8 along with major parameters. Both machines 
run at constant speed with 2% slip. At 0.9 seconds, the DFIM rotor resistance is short-circuited; this is followed by a 3-phase-to-
ground fault at the network at 1 second, which is cleared at 1.2 sec. Finally, the DFIM is disconnected from the grid by sw2 at 1.3 
sec. Results for the DFIM and IM currents are given in Fig. 9 and 10 respectively. In these figures, we see that currents are well-
superposed between the SSN simulation at 25 µs and the SPS one at 1µs.  

1) Numerical stability comparison 

In the case just presented, it was found that a minimum load of 50kW (5% of the DFIM rating) was required to maintain the 
stability of the DFIM when sw2 opens (Fig. 8  using SPS at 25 µs. In the SSN case, no load was required at all. Even at 1 µs, a 
small load of 2 kW was required to maintain the SPS stability (and included in the presented results). 

The reason for this parasitic load requirement for SPS is again the current injection with delay used in it, as well as other state-
space-based package such as PLECS. 

 
Fig. 8  Test case with 2 asynchronous machines  

 
Fig. 9  DFIM currents 
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Fig. 10  Squirrel-cage induction machine currents. 

C. PMSM drive vector control test case 

This test case is about the PMSM SSN model, which we compare with SPS at a very small simulation time step, taken as a 
reference. 

A most common usage of PMSM is combined with an IGBT inverter. We present here a case that was already studied in [2], in 
which two problems had to be addressed: 

- A relatively high PWM frequency with regards to the simulation time step, possibly leading to inaccuracies in active drive 
mode. 

- A stability problem when the inverter is left in so-called ‘free-running’ mode, that is when the inverter gating are not pulsing, 
and also in case one phase of the motor is opened, due to a fault one IGBT leg, for example. 

In [2], this problem was addressed relatively well, using interpolated switching function methods that handle high-frequency 
PWM very well but were still suffering from stability issues. Maximum high-impedance values were typically under 1000 Ohms 
in this case. 

The model, depicted in Fig. 11 used in this test consists of a diode rectifier feeding a DC-link from which a PMSM IGBT 2-level 
drive is controlled using a PWM vector controller. The PMSM and the vector controller are the exact same one as in [2] with the 
exception of PWM frequency, which was raised from 2.25 to 9 kHz. 

 

 
Fig. 11  PMSM drive test case 
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The test performs the following actions: 
- PMSM acceleration to 1000 rpm at 0.05 sec. 
- At 0.15 sec, phase A is opened 
- From 0.2 to 0.4 sec, the motor is accelerated to 2000 rpm (with the open phase) 
- At 0.4, the DC-link voltage is forced to 200V. 
- At 0.45, IGBT gates are turned OFF, resulting in the natural rectification by the IGBT bridge and deceleration of the PMSM. 

Results, depicted in Fig. 12  almost prefectly match between the SSN case at 10 µs and the SPS case at 1 µs. 

 
Fig. 12  PMSM currents and torque 

1) Numerical stability comparison 

In the open-phase mode of the test, the maximum resistance of the open fault in SPS is under 1000 Ohms at 10 µs. Over this 
value, the model becomes unstable (by the virtue of the current injection technique of SPS).  In the SSN case by comparison, this 
open fault resistance can be well over 100000 Ohms, resulting in improved accuracy in this mode. It is also worth to note that the 
9 kHz PWM disqualify the use of SPS at 10 µs for accuracy reasons. By comparison, SSN can make the PWM event interpolations. 
This technique is somehow similar the Time-Stamped-Bridge (TSB) used by Mitsubishi Electric in [2]. The difference is that TSBs 
are interpolated switching functions, while SSN interpolation occurs within the state-space equations directly.  

2) Numerical accuracy comparison 

A current injection with delay method (CIDM) is used in SPS and PLECS. CIDM can be used because the internal PMSM 
equation are solved with Forward Euler method (or Trapezoidal plus one delay), an explicit method. This enables the main state-
space solver and the CIDM model of the PMS to ‘alternate’ their solutions, computing one after the other. 

By contrast, SSN is an implicit solver. This means that the solution for the PMSM equations are made simultaneously with the 
main state-space equation of the rest of the network. 

We are showing next a small test case where some differences can be observed between the 2 approaches. The test consists of 
driving the same PMSM drive with a constant 200V DC, a rotor speed of 200 rad/s and letting phase A of the inverter in ‘high’ 
position while phase B and C are in ‘lower’ position (in other words: phase A of the PMSM is at 200V and phases B-C are grounded). 

The results of the test are depicted in Fig. 13  They show that the motor current runs quite high, above 1000A. Closer examination 
shows that the SPS simulation at 10 µs is a little bit less accurate than SSN at 10 µs and SPS at 1 µs, the latter considered as a 
reference. Further tests (not shown) demonstrated that SSN have an imprecision similar to SPS when the speed term is included 
with a delay in the SSN equations. The speed term of the PMSM is included with a delay in SPS (as of release 2017a); more 
explanations are given about this topic in Section VII-A about SSN LDLT factorization. 



Based on Electrimacs-2017 paper, “State-space-nodal rotating machine models with improved numerical stability” 

 
Fig. 13      Fixed-voltage PMSM test 

VI. SSN MACHINE MODEL PROGRAMMABILITY 

These SSN machine models are particular cases of SSN User Custom Block (SSN-UCB), which allows users to incorporate their 
own electric modules into the SSN nodal admittance solver. We show here how this is done for the PMSM. 

1) SSN DCM determination for the PMSM 

Detailed SSN DCM derivation is made here. The same method is used for other machines. For the PMSM we have the continuous 
time matrices 

ܣ                             ൌ ሺെܴିܮଵ ൅ Ωሻ    ܤሺ௜௡ሻ ൌ 	ට
ଷ

ଶ
ሺ௡௢ሻܤ    ߣ ൌ T     ܥ ൌ ଵ   Dିܮ′ܶ ൌ 0,              (17) 

with ݑሺ௜௡ሻ ൌ ߱௘ , ݑሺ௡௢ሻ ൌ 	 ௔ܸ௕௖  and  ݕሺ௡௢ሻ ൌ 	  .௔௕௖ܫ
Discretization with trapezoidal rule with a time-step h gives: 

ௗܣ ൌ ቀܫ െ ஺௛

ଶ
ቁ
ିଵ
ቀܫ ൅ ஺௛

ଶ
ቁܤௗଵ ൌ ௗଶܤ ൌ

஻௛/ଶ

ூି஺௛/ଶ
    (with  ܤ ൌ ሾܤሺ௜௡ሻ	ܤሺ௡௢ሻሿ )   and ܥௗ ൌ  ܥ

The DCM admittance is then equal to   ௗܻ௖௠ ൌ  :ௗଶሺ௡௢ሻ   and the DCM history source is equal toܤௗܥ

௛௜௦௧ܫ ൌ ௗ߰௡ܣሼୢܥ ൅ ௡ሺ௜௡ሻݑௗଵܤ ൅ ௡௢ሻ	௡ሺݑௗଵܤ ൅	ܤௗଶݑ௡ାଵሺ௜௡ሻሽ 

These equations are updated using Simulink blocks only. 

2) DCM calculation using Simulink blocks 

SSN-UCB are sometimes difficult to code because they require the user to design ‘C’ code Simulink S-function.  
In the present work however, the UCB were coded using only Simulink blocks, as depicted in Fig. 14 In the figure, we see the 

part of the machine where the so-called nodal history source and admittance matrix are computed using the discretized matrices	ܣௗ, 
ሾ݊ݑ and the input ܥ ,ௗܤ ൅ 1ሿ, which is the machine voltage coming from the main YVൌI  SSN nodal admittance solution, after d-q 
referential and turn-ratio conversions. 
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Fig. 14  SSN machine nodal history source and admittance matrix 

This is a major improvement on programmability of the SSN solver over methods that requires C-like coding. This method is 
applicable to other UCB models, like SSN On-Load Tap Changing Transformer (OLTC) for example. 

VII. REAL-TIME PERFORMANCE 

All the models presented in this paper run in real-time on the eMEGAsim Digital Real-Time Simulator (DRTS). 
TABLE I: REAL-TIME PERFORMANCE ON X10-XEON 

Model Model calculation time (µs) SSN nodes 
SM 8.5 8 

IM +DFIM 6.7 12 
PMSM 5.7 5 

 
Table I shows the calculation time step of the complete models described by Fig. 4  including controls, on a single core of the 

DRTS running under RT-Lab 11 and using Xeon X10 processors. 20 cores are available in the standard DTRS as of 2016. Standard 
LU factorization was used. 

The SSN machine models developed in this paper are all in the category of so-called ‘variable admittance’ model. This means 
that their DCM equation varies at each time step. Therefore LU factorization must be done at each time step for the nodes where 
these SSN machines are connected and this increases the computational time. 

In contrast, CIDM models don’t have this issue because they don’t contribute at all to the admittance matrix. This advantage 
comes with decreased numerical stability as we demonstrated in this paper. 

VIII. FURTHER MODEL ENHANCEMENTS 

It is possible enhance the model in terms of performance and features. In this section, we describe some of these. 

A. LDLT factorization compatible models 

Recent versions of SSN offer the possibility to use an LDLT factorization of the SSN nodal admittance matrix, instead of the 
traditional LU one. LDLT factorization is close to twice as fast as LU in theory but requires the admittance matrix to be symmetric. 
Unfortunately, the incorporation of the speed term	Ω in the A matrix cause the admittance matrix of the machines to be asymmetrical. 
The solution to this problem is to move Ω to the input part of the state-space equations, with a delay on the flux vector. For the PMSM 
for example, this gives: 

෡߰ ൌ െܴିܮଵ߰ ൅ Ω߰ௗ௘௟ െ ߱௘Ψ ൅ ܶ ௔ܸ௕௖ 
where ߰ௗ௘௟ is the delayed state vector, taken as input now. 

 
Delayed speed term is used in the EMTP Theory book [4] and the dq0 model described in [5]. It is less precise that direct 
incorporation in the state matrix ܣ but can lead to faster models because ܣ is constant and can be pre-inverted then. Precision is 
improved by using a one-step prediction on delayed flux vector. 

 

B. Iron losses 

In some applications, such as in electric vehicle drives where volume is critical, PMSMs are usually designed with maximum 
torque per volume, high power density and possibly non-negligible machine core losses due to eddy currents and hysteresis. In [10], 
the classic d-q axis PMSM model was augmented with a shunt resistance in both axes to represent the core losses. This approach 
can be applied to SSN-based motor models. 
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C. Advanced saturation capability  

The proposed models are easily customizable by users as they are all made in Simulink blocks. Advanced saturation capabilities 
could therefore be implemented in the models. For example, leakage flux saturation [11] could be implemented in the synchronous 
machine. 

IX. DISCUSSION 

This paper’s objective was to demonstrate that the SSN theory can be used to develop rotating machine models in a systematic 
way and also that the resulting models were more stable than current-injection with delay method (CIDM) used in most state-space 
simulation packages such as SPS and PLECS today. 

The theory and equations of SM, IM/DFIM and PMSM are well known in the literature. This paper showed that all these models 
could be translated methodically into discrete-time models usable in any nodal admittance based simulation package. The word any 
is important and really means that after the models are determined, they can be used in any nodal admittance based package, such 
as EMTP or the Hypersim real-time simulator. 

The second aspect of the paper is about the numerical stability of the SSN models. The paper clearly demonstrated that the 
resulting models could be used without parasitic load or RC-snubber at the terminal of the machines in cases where the machine 
gets suddenly connected to high-impedance or opened-circuits. This stability property is mainly due to the simultaneity of the 
machine and grid solutions in nodal admittance based solver (not only SSN). By comparison, CIDM alternates between machine 
and grid solutions. This delayed solution method is a major source of instability when the machines are connected to inductive 
circuits. 

The SSN models shown in this paper are available in the ARTEMiS plug-in for SimPowerSystems [12] software package; the 
machine models are opened and easy to understand because of their Simulink graphical coding. This will allow researchers to 
modify them if needed. They can also be customized for teaching purposes. 

 

X. APPENDIX 1: SATURATION IN SYNCHRONOUS MACHINES 

Saturation is considered in this model using the total air-gap flux magnitude  ߰ ௠௔௚ ൌ ට߰௠ௗ
ଶ ൅ ߰௠௤ଶ  , which is the flux that passes 

only through the mutual inductances. The simplest and common way to consider saturation is to modify ܮ௠ௗ and ܮ௠௤ dynamically 
during simulation according to the equivalent linear inductance at the operating point. 

However this is not accurate in transient conditions because only the steady-state magnetization inductance is considered then. 
A more precise way to include saturation is to use the linearized inductance at the point of operation [4][5]. Fig. 15 shows the 
difference between the linear inductance ܮ௟௜௡ and the incremental inductance		ܮ௜௡௖. The latter as the effect of creating a flux offset 
߰଴	which must be carefully considered.  In this case, the SM equations are transformed to take the ‘incremental fluxes’ ߰" as state 
variables. We this change of variable we obtain: 

                                                                        ߰ ൌ ߰଴ ൅ ߰"                                                                                      (18a) 

                                                  ෡߰
"
ൌ ሺെܴܮ௜௡௖

ିଵ ൅ Ωሻ߰" ൅ Ω߰଴ െ
ୢ߰0
ୢ୲
൅ ௗܸ௤௙                                                                (18b) 

ௗ௤௙ܫ	                                                                        ൌ ୧୬ୡܮ
ିଵ ߰"	                                                                                     (18c) 

in which ߰଴ and ܮ௜௡௖ are continuously updated according to the operating point. A unique saturation curve is used here and the 
following formulas are used to part into d- and q-axis values for round rotor machines: 
௜௡௖ିௗܮ                       ൌ ௜௡௖ି௤ܮ   ,  ௜௡௖ܮ ൌ ሺܮ௠௤/ܮ௠ௗሻܮ௜௡௖ ,   ߰଴ିௗ ൌ ሺ߰௠ௗ/߰௠௔௚ሻ߰଴	  ,   ߰଴ି௤ ൌ ሺ߰௠௤/߰௠௔௚ሻ߰଴   (19) 
 
With salient rotor machines, this is done only for d-axis. 
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Fig. 15  Typical open stator synchronous machine saturation curve 

APPENDIX 2: SPEED TERM DERIVATION 

 
In this appendix, we derive the speed term of the Synchronous machine. This speed term is dependent on the specific Park 

transform used and this can be misleading when comparing with other references 
The equivalent circuit of the model is represented in the rotor reference frame (dq frame) and we neglect all rotor windings in 

the following derivation. The following Park transformation used to express all quantities in the reference frame attached to rotor, 
where ߠ is the rotor angle, is given by: 

                                                                       ܶ ൌ ܵ	K                         (19a) 

where 

                                                      ܵ ൌ ൤
cosሺߠሻ sinሺߠሻ
െ sinሺߠሻ cosሺߠሻ

൨               (19b) 

ܭ                                                     ൌ ටଶ

ଷ
. ൤
1 െ1/2 െ1/2

0 √3/2 െ√3/2
൨            (19c) 

and ݀ݐ݀/ߠ ൌ ߱	.  

 
Fig. 16  D-Q axis and ABC phases axis, all turning at speed ߱. (With flux on d-axis, the back-EMF voltage is on the q-axis) 
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With ௗܸ௤ ൌ ൣ ௦ܸௗ	 ௦ܸ௤		൧
௧
,  ߰ ൌ ൣ߰௦ௗ	߰௦௤	൧

௧
ௗ௤ܫ , ൌ ൧		௦௤ܫ	௦ௗܫൣ

௧
, ܴ ൌ ݀݅ܽ݃ሺܴ௦, ܴ௦	ሻ , the following relations apply, 

   ௗܸ௤ ൌ ܶ	 ௔ܸ௕௖    ܫ௔௕௖ ൌ ܶ௧	ܫௗ௤ and  ܶିଵ ൌ ܶ௧	ሺܾ݁ܿܽ݁ݏݑ	݂݋	݈ܽ݉ݎ݋݊݋݄ݐݎ݋	݉ݎ݋݂ݏ݊ܽݎݐሻ 

where ௔ܸ௕௖ is the vector of machine terminal voltage to ground  and ܫ௔௕௖ is the vector of current entering the terminals. Using the 
load convention for signs, the machine equations are then equal:  

                                                                            ௔ܸ௕௖ െ ௔௕௖ܫܴ ൌ
ௗటೌ್೎
ௗ௧

            (20) 

ܶ௧ ௗܸ௤ െ ܴܶ௧ܫௗ௤ ൌ
ௗሺ்೟ట೏೜ሻ

ௗ௧
   (21)    

Times T gives: 

ௗܸ௤ െ ௗ௤ܫܴ ൌ ܶ
ௗሺ்೟ట೏೜ሻ

ௗ௧
       (22) 

 

                                  ܶ
ௗሺ்೟ట೏೜ሻ

ௗ௧
ൌ ܶ

ௗ்೟

ௗ௧
߰ௗ௤ 	൅

ௗట೏೜
ௗ௧

       ->       ܶ
ௗ்೟

ௗ௧
ൌ ܭܵ

ௗሺௌ௄ሻ೟

ௗ௧
ൌ ௧ܭܭܵ ௗௌ

೟

ௗ௧
ൌ ܵ

ௗௌ೟

ௗ௧
      (23) 

 

                                          ܵ ൌ ൤
cos	ሺߠሻ sin	ሺߠሻ
െsin	ሺߠሻ cos	ሺߠሻ൨    and    ܵ௧ ൌ ൤

cos	ሺߠሻ െsin	ሺߠሻ
sin	ሺߠሻ cos	ሺߠሻ ൨                            (24) 

                                     ܵ ௗௌ೟

ௗ௧
ൌ ܵ߱ ൤

െsin	ሺߠሻ െcos	ሺߠሻ
cosሺߠሻ 	െsinሺߠሻ൨   =ܵ߱ܵ

௧ ቂ0 െ1
1 0

ቃ=߱ ቂ0 െ1
1 0

ቃ    (ܵܵ௧ ൌ  ሻ      (25)ܫ

 

                                                                                ܶ ௗ்೟

ௗ௧
߰ௗ௤ ൌ ߱ ቂ0 െ1

1 0
ቃ	߰ௗ௤                                         (26) 

 

                                                                        ௗܸ௤ െ ௗ௤ܫܴ ൌ
ௗట೏೜
ௗ௧

൅ ߱ ቂ0 െ1
1 0

ቃ	߰ௗ௤                                  (27) 

 

                                                                  ௗܸ௤ െ ଵ߰ௗ௤ିܮܴ ൅ ߱ ቂ 0 1
െ1 0

ቃ	߰ௗ௤ ൌ
ௗట೏೜
ௗ௧

                                 (28)      

               
The corresponding full speed term for the synchronous machine is therefore: 

Ω ൌ ߱
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