Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Table of Contents
maxLevel3

...

Bitstream Configuration

Every bitstream file (.bin), or programmable definition file Versal boot Programmable Device Image (.pdi), programmed into an FPGA interfaced with the OPAL-RT Board driver must have an associated configuration file. The driver requires a description of the hardware installed in the simulator to correctly interface with it.

...

The following options can be configured through the General section:

Chassis typeSelect the chassis used in the simulation.
Chassis IDEnter the chassis ID of the selected FPGA board in the simulation.Use external synchronization sourceWhen selected, the board
    IP address

In order to allow bitstream programming, this field will be available for the user to enter the appropriate IP address that is displayed on the Chassis LCD.

NOTE: Only visible when Chassis type is OP4810 or OP4815.

    Chassis name

This field will be available for the user to configure a custom name to be displayed on the Chassis LCD.

NOTE: Only visible when Chassis type is OP4810 or OP4815.

Chassis IDEnter the chassis ID of the selected FPGA board in the simulation.


Use external synchronization source

When selected, the board uses an external synchronization source as opposed to its internal clock.
Operate as hardware synchronization source must be checked if the external synchronization source comes from another simulation (i.e. another model).

Type of generated synchronization signal

If the Use external synchronization source box above is unchecked, then this parameter is visible, allowing the user to choose the medium where the FPGA outputs its synchronization pulse: choices are through the optical cable or through the audio cable.

NOTE: Spartan-3 cards (OP5142) have only one type of synchronization signal, RTSI. This signal is routed to the necessary synchronization converters (audio or optical), according to the system's assembly.

Operate as a hardware synchronization source

Only visible if the Use external synchronization source checkbox above is enabled. 


  • When enabled, the FPGA is configured to use the external synchronization source received to synchronize the simulation (master-with-external-clock mode)
  • When disabled, the FPGA is configured to use the external synchronization source received but it will not qualify to drive the simulation (slave mode)
Type of expected synchronization signal

This parameter is only visible if the Use external synchronization source checkbox above is enabled. It is a drop-down menu giving the user the choice to synchronize either through copper or optical cables.

NOTE: Spartan-3 cards (OP5142) have only one type of synchronization signal, RTSI. This signal is routed to the necessary synchronization converters (audio or optical), according to the system's assembly.

Bitstream configuration locationThis field allows either searching the bitstream configuration file using the file system or selecting it from a drop-down list based on the available files in the standard OPAL-RT repositories.
Bitstream configuration file

If the bitstream configuration location is set to File system

  • A file-browsing field appears.
  • Clicking it opens a File Explorer window to navigate to the bitstream configuration file.

Background Color
color#D3D3D3


This file must be in the [board_type]_[file_name].extension format.

The .extension can either be .opal or .opbin. Example: VC707_Config1.opal or VC707_Config1.opbin.



If the bitstream configuration location is set to Standard repositories:
A drop-down with the available configuration files found in the standard Opal-RT repositories appears.

Once a file is selected and the interface has checked validity, the Folders section of the configuration panel updates to show the I/O capability of each slot as described in the file.


Show advanced configuration

When selected, the user can configure advanced features:
Time step factorDenotes a multiplier for the board's speed in relation to the model's timestep.
Enable FPGA register logger

For advanced debugging purposes, the driver will start a tool that will log all the FPGA register accesses during the initialization and the reset of the model. The logs will be saved in files named with the prefix "register_trace*". Those files are retrieved on the host PC after the reset of the model.

Automatic bitstream reprogramming

If selected, bitstream programming is triggered automatically at the model load.

The bitstreams should be placed at the model path and must have the name given in the configuration file used.

If the bitstream currently programmed in the board is found to be the same as the one about to be programmed, then the bitstream is reloaded into the FPGA. The field is not available if the bitstream file is not Found.

Bitstream file nameA static field showing the bitstream found based on the selected bitstream configuration file.
ForceThis option flashes the board even if it is already programmed with the same bitstream.
Disable strict hardware mismatch validationIf selected, the
use of multiple I/O card types based on general compatibility rules is activated instead of exact hardware ID values.Chassis name

This field will be available for the user to configure a custom name to be displayed on the Chassis LCD.

NOTE: Only visible when Chassis type is OP4810 or OP4815.

IP address

In order to allow bitstream programming, this field will be available for the user to enter the appropriate IP address that is displayed on the Chassis LCD.

NOTE: Only visible when Chassis type is OP4810 or OP4815
use of multiple I/O card types based on general compatibility rules is activated instead of exact hardware ID values.
Enable FPGA ScopeIf selected, the FPGA Scope will be available when the model is executed. The option is visible only if the feature is available in the selected bitstream configuration file.
Enable virtual modeIn virtual mode, the model can be executed even if this I/O interface is not compatible with the hardware configuration of the system. The connections between the model and the I/O interface will be done during the initialization, but the I/O interface will not do anything. The virtual mode can be used to troubleshoot problems on a system without having the required hardware, or to prepare a model with different I/O interfaces even if the final hardware platform is not available.


For more information, contact OPAL-RT's Support team.

...

When clicking this section, the fields provide the following information to the user:

DescriptionElectrical characteristics of the slot.
FunctionalityType and direction of the I/Os in the slot.
I/O card typeI/O board identifier.

Other parameters may appear here, depending on the I/O board type.

...

  • This driver must be run in Hardware Synchronized mode.
  • Only XHP mode is supported.
  • The disable strict hardware mismatch validation feature is not available on OP5142.
  • Each FPGA must have connections with at least one subsystem running at the model's timestep (in the context of multi-rate subsystems).
  • A configuration having multi-rate subsystems associated with a slave FPGA board does not support the action of Pause/Execute during the simulation.
  • On all chassis, the motor models are not supported for the moment.
  • Chassis type OP5143 standalone is supported only for MuSE as central with four remotes. Using it as MuSE remote is not supported . It does not support any I/Os.
  • For the chassis types OP4810 and OP4815, the maximum support PDI file size is 64 MiB.

List of Compatibilities

Chassis and FPGA boardSupported
OP4500 with an MMPK7 moduleNo longer supported.
OP4510 with a TE0741 moduleYes
OP4512 with a TE0741 module
OP4520 I/O expansion box with a TE0741 module
OP4610 with a TE0741 module
OP5600 with an OP5142 board
OP5600 with an OP5143 board
OP5600 with an ML605 boardNo
OP5607 I/O expansion box with a VC707 boardYes
OP5707 with a VC707 board
OP7020 I/O expansion box with a VC707 board
OP7160/OP7161

No

OP7170Yes
OP5143 standalone PCIe cardYes
OP4810Yes
OP4815Yes

Limitations of the Multi-System Expansion link feature

...

Chassis and FPGA boardCentralRemote
OP4500 with an MMPK7 moduleNoNo
OP4510 with a TE0741 moduleYesYes
OP4512 with a TE0741 moduleYes
OP4520 I/O expansion box with a TE0741 moduleYes, if connected via PCIe to a simulator
OP4610 with a TE0741 moduleYes
OP5600 with an OP5142 boardNoNo
OP5650 with an OP5143 boardYesYes
OP5600 with an ML605 boardNoNo
OP5607 I/O expansion box with a VC707 boardYes, if connected via PCIe to a simulatorYes
OP5700 with a VC707 boardYes
OP7020 I/O expansion box with a VC707 boardYes, if connected via PCIe to a simulator
OP7160/OP7161NoNo
OP7170YesYes
OP5143 standaloneYesNo
OP4810NoNo
OP4815NoNo