PI Section, 12-ph with Fault

Documentation Home Page HYPERSIM Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.

PI Section, 12-ph with Fault

Description

The PI line model is mainly used for short transmission lines. The equivalent circuit is shown below.

It is assumed that the capacitance on both sides is identical. The RL branches are also coupled. The parameters for the 12-phase PI lines are the same as those for 3-phase PI lines, except that the dimension of the R, L and C matrices representing the impedance and admittance of the conductors is 12x12, instead of 3x3. The 12-phase PI model represents four 3-phase transmission lines in parallel. 

In this model, there is a new parameter for sequences. The neutral coupling between the four line circuits (mutual impedance) is represented only in zero sequence.

This model can be used to simulate an internal fault. However, the number of operations allowed in this model is four (4) per fault element, instead of ten (10) in normal cases.



Table of Contents



Mask and Parameters

General Parameters

Name

Description

Unit

Variable = {Possible Values}

Name

Description

Unit

Variable = {Possible Values}

Description

Use this field to add information about the component



Description = {'string'}

EMTP (.pun) file for line parameters calculation

The location (path) of the EMTP file (pun file) containing the line parameters. However, the EMTP “.pun” format is not allowed with this model



File = {'path.name'}

Line 1

Fault distance from (+) side (Line 1)

km

fault_loc1 = {0, 1e64}

Line 2

Fault distance from (+) side (Line 2)

km

fault_loc2 = {0, 1e64}

Line 3

Fault distance from (+) side (Line 3)

km

fault_loc3 = {0, 1e64}

Line 4

Fault distance from (+) side (Line 4)

km

fault_loc4 = {0, 1e64}

Type

The line data can be taken using Matrix or Sequence parameters  



Matrix/Sequence = { 0, 1}

Matrix {0}

Untransposed line. The data is filled in the matrices

Sequence {1}

Transposed line. The data is filled in the sequences

Line length

The length of the line

km

length = {0, 1e64}

Base power (perPhase)

Base value for PU conversion

MVA per phase

pBase = { [1, 1e64] }

Base voltage (rmsLN)

Base value for PU conversion

kV rms LN

vBase = { [1, 1e64] }

Base frequency

Base value for PU conversion

Hz

fBase = { [1, 1e64] }

Matrix Parameters

Name

Description

Unit

Variable = {Possible Values}

Name

Description

Unit

Variable = {Possible Values}

Resistance - R

Resistance matrix (12x12)

Ω/km

R = {'-1e64, 1e64'}

Inductance - L

Inductance matrix (12x12)

H/km

L = {'-1e64, 1e64'}

Capacitance - C

Capacitance matrix (12x12)

F/km

= {'-1e64, 1e64'}

Sequence Parameters

Name

Description

Unit

Variable = {Possible Values}

Name

Description

Unit

Variable = {Possible Values}

Self impedance - Line 

R

Resistance value for Zero and Positive sequences (Line 1)

Ω/km

Rself1 = {'-1e64, 1e64'}

L

Inductance value for Zero and Positive sequences (Line 1)

H/km

Lself1 = {'-1e64, 1e64'}

C

Capacitance value for Zero and Positive sequences (Line 1)

F/km

Cself1 = {'-1e64, 1e64'}

Self impedance - Line 2

R

Resistance value for Zero and Positive sequences (Line 2)

Ω/km

Rself2 = {'-1e64, 1e64'}

L

Inductance value for Zero and Positive sequences (Line 2)

H/km

Lself2 = {'-1e64, 1e64'}

C

Capacitance value for Zero and Positive sequences (Line 2)

F/km

Cself2 = {'-1e64, 1e64'}

Self impedance - Line 3

R

Resistance value for Zero and Positive sequences (Line 3)

Ω/km

Rself3 = {'-1e64, 1e64'}

L

Inductance value for Zero and Positive sequences (Line 3)

H/km

Lself3 = {'-1e64, 1e64'}

C

Capacitance value for Zero and Positive sequences (Line 3)

F/km

Cself3 = {'-1e64, 1e64'}

Self impedance - Line 4

R

Resistance value for Zero and Positive sequences (Line 4)

Ω/km

Rself4 = {'-1e64, 1e64'}

L

Inductance value for Zero and Positive sequences (Line 4)

H/km

Lself4 = {'-1e64, 1e64'}

C

Capacitance value for Zero and Positive sequences (Line 4)

F/km

Cself4 = {'-1e64, 1e64'}

Mutual impedance lines 1-2

R

Mutual resistance value between lines 1-2 

Ω/km

Rmut12 = {'-1e64, 1e64'}

L

Mutual inductance value between lines 1-2 

H/km

Lmut12 = {'-1e64, 1e64'}

C

Mutual capacitance value between lines 1-2 

F/km

Cmut12 = {'-1e64, 1e64'}

Mutual impedance lines 1-3

R

Mutual resistance value between lines 1-3

Ω/km

Rmut13 = {'-1e64, 1e64'}

L

Mutual inductance value between lines 1-3

H/km

Lmut13 = {'-1e64, 1e64'}

C

Mutual capacitance value between lines 1-3

F/km

Cmut13 = {'-1e64, 1e64'}

Mutual impedance lines 1-4

R

Mutual resistance value between lines 1-4

Ω/km

Rmut14 = {'-1e64, 1e64'}

L

Mutual inductance value between lines 1-4

H/km

Lmut14 = {'-1e64, 1e64'}

C

Mutual capacitance value between lines 1-4

F/km

Cmut14 = {'-1e64, 1e64'}

Mutual impedance lines 2-4

R

Mutual resistance value between lines 2-4

Ω/km

Rmut24 = {'-1e64, 1e64'}

L

Mutual inductance value between lines 2-4

H/km

Lmut24 = {'-1e64, 1e64'}

C

Mutual capacitance value between lines 2-4

F/km

Cmut24 = {'-1e64, 1e64'}

Mutual impedance lines 2-3

R

Mutual resistance value between lines 2-3 

Ω/km

Rmut23 = {'-1e64, 1e64'}

L

Mutual inductance value between lines 2-3 

H/km

Lmut23 = {'-1e64, 1e64'}

C

Mutual capacitance value between lines 2-3 

F/km

Cmut23 = {'-1e64, 1e64'}

Mutual impedance lines 3-4

R

Mutual resistance value between lines 3-4

Ω/km

Rmut34 = {'-1e64, 1e64'}

L

Mutual inductance value between lines 3-4 

H/km

Lmut34 = {'-1e64, 1e64'}

C

Mutual capacitance value between lines 3-4 

F/km

Cmut34 = {'-1e64, 1e64'}

Timing Parameters

Name

Description

Unit

Variable = {Possible Values}

Name

Description

Unit

Variable = {Possible Values}

Time units

Units applied to the programmed state transition operations










Ut = {s, ms, c}



Second {s}

All operations Tn are in seconds



Millisecond {ms}

All operations Tn are in milliseconds



Cycle {c}

All operations Tn are in electrical cycles (setting the frequency is mandatory)

Time programming

Master switch that determines whether the programmed operations occur when triggering an acquisition







EnaGen = {0, 1}



Disable {0}

Programmed operations are disabled



Enable {1}

Programmed operations are enabled

Steady-state condition



Line 1

State of phase breakers for Line 1 in steady-state; “colored” if the breaker is open and “grey” if the breaker is closed



iniStateA = {0, 1}

iniStateB = {0, 1}

iniStateC = {0, 1}

iniStateG = {0, 1}



Line 2

State of phase breakers for Line 2 in steady-state; “colored” if the breaker is open and “grey” if the breaker is closed



iniStateA2 = {0, 1}

iniStateB2 = {0, 1}

iniStateC2 = {0, 1}

iniStateG2 = {0, 1}



Line 3

State of phase breakers for Line 3 in steady-state; “colored” if the breaker is open and “grey” if the breaker is closed



iniStateA3 = {0, 1}

iniStateB3 = {0, 1}

iniStateC3 = {0, 1}

iniStateG3 = {0, 1}



Line 4

State of phase breakers for Line 4 in steady-state; “colored” if the breaker is open and “grey” if the breaker is closed



iniStateA4 = {0, 1}

iniStateB4 = {0, 1}

iniStateC4 = {0, 1}

iniStateG4 = {0, 1}

Frequency

Should be set using the parameter "Base frequency".

Hz

Freq = { [45, 70] }

Switching times

Line 1

Enable/disable the state transition operation on Line 1.





EnaT1 = {0, 1}

EnaT2 = {0, 1}

...

Disable {0}

OPAL-RT TECHNOLOGIES, Inc. | 1751, rue Richardson, bureau 1060 | Montréal, Québec Canada H3K 1G6 | opal-rt.com | +1 514-935-2323
Follow OPAL-RT: LinkedIn | Facebook | YouTube | X/Twitter