Documentation Home Page ◇ HYPERSIM Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.
PI Section, 6-ph
Description
The PI line model is mainly used for short transmission lines. The equivalent circuit is shown below.
It is assumed that the capacitance on both sides is identical. The RL branches are also coupled. The parameters for the 6-phase PI lines are the same as for those for 3-phase PI lines, except that the dimension of the R, L, and C matrices representing the impedance and admittance of the conductors is 6x6, instead of 3x3. The reason is that this model represents a line with six conductors. A 6-phase PI model can be used to represent a double-circuit transmission line. The neutral coupling between both circuits (mutual impedance) is represented only in zero sequences.
Mask and Parameters
General Parameters
Name | Description | Unit | Variable = {Possible Values} | |||
---|---|---|---|---|---|---|
Description | Use this field to add information about the component | Description = {'string'} | ||||
EMTP (.pun) file for line parameters calculation | The location (path) of the EMTP file (pun file) containing the line parameters. However, The EMTP “.pun” format is not allowed with this model | File = {'path.name'} | ||||
Type | The line data can be taken using Matrix or Sequence parameters | Matrix/Sequence = { 0, 1} | ||||
Matrix {0} | Untransposed line. The data is filled in the matrices | |||||
Sequence {1} | Transposed line. The data is filled in the sequences | |||||
Line Length | The length of the line | km | length = {0, 1e64} | |||
Base power (perPhase) | Base value for PU conversion | MVA per phase | pBase = { [1, 1e64] } | |||
Base voltage (rmsLN) | Base value for PU conversion | kV rms LN | vBase = { [1, 1e64] } | |||
Base frequecy | Base value for PU conversion | Hz | fBase = { [1, 1e64] } |
Matrix Parameters
Name | Description | Unit | Variable = {Possible Values} | |||
---|---|---|---|---|---|---|
Resistance - R | Resistance matrix | Ω/km | R = {'-1e64, 1e64'} | |||
Inductance - L | Inductance matrix | H/km | L = {'-1e64, 1e64'} | |||
Capacitance - C | Capacitance matrix | F/km | C = {'-1e64, 1e64'} |
Sequence Parameters
Name | Description | Unit | Variable = {Possible Values} | |||
---|---|---|---|---|---|---|
| R | Resistance value for Zero and Positive sequences (Line 1) | Ω/km | Rself1 = {'-1e64, 1e64'} | ||
L | Inductance value for Zero and Positive sequences (Line 1) | H/km | Lself1 = {'-1e64, 1e64'} | |||
C | Capacitance value for Zero and Positive sequences (Line 1) | F/km | Cself1 = {'-1e64, 1e64'} | |||
| R | Resistance value for Zero and Positive sequences (Line 2) | Ω/km | Rself2 = {'-1e64, 1e64'} | ||
L | Inductance value for Zero and Positive sequences (Line 2) | H/km | Lself2 = {'-1e64, 1e64'} | |||
C | Capacitance value for Zero and Positive sequences (Line 2) | F/km | Cself2 = {'-1e64, 1e64'} | |||
| R | Mutual resistance value between lines 1-2 | Ω/km | Rmut = {'-1e64, 1e64'} | ||
L | Mutual inductance value between lines 1-2 | H/km | Lmut = {'-1e64, 1e64'} | |||
C | Mutual capacitance value between lines 1-2 | F/km | Cmut = {'-1e64, 1e64'} |
Line Generator
For more information see Line Generator
Ports, Inputs, Outputs and Signals Available for Monitoring
Ports
This component supports a 6-phase transmission line
Name | Description |
---|---|
net_1_1(a,b,c) | Network connection of phases (a,b,c) of the left (+) side of line 1 |
net_1_2(a,b,c) | Network connection of phases (a,b,c) of the right side of line 1 |
net_2_1(a,b,c) | Network connection of phases (a,b,c) of the left (+) side of line 2 |
net_2_2(a,b,c) | Network connection of phases (a,b,c) of the right side of line 2 |
Inputs
None
Outputs
None
Sensors
At acquisition, the signals available by the sensors are:
Name | Description | Unit |
---|---|---|
I1.1(a,b,c) | Current in each phase at left (+) end of line 1 | A |
I1.2(a,b,c) | Current in each phase at right end of line 1 | A |
I2.1(a,b,c) | Current in each phase at left (+) end of line 2 | A |
I2.2(a,b,c) | Current in each phase at right end of line 2 | A |
Calculation of Line Parameters
The EMTP “.pun” format is not allowed with this model. However, the electrical parameters of PI lines can be calculated by using the Line Generator .
OPAL-RT TECHNOLOGIES, Inc. | 1751, rue Richardson, bureau 1060 | Montréal, Québec Canada H3K 1G6 | opal-rt.com | +1 514-935-2323
Follow OPAL-RT: LinkedIn | Facebook | YouTube | X/Twitter