Documentation Home Page Hardware Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.

Resistive Sensors

Each resistive sensor channel consists of a set of twenty resistors, the combination of which defines the resistance value of the channel, in the range  0.5Ω and 262.14375kΩ.

The operator controls the resistance value from the RSM Run-Time Panel. This value is then transferred to the FPGA module of the card via the real-time model.  From this value, the FPGA program determines the pattern of resistors to be activated to produce the desired resistance and applies this pattern value to the card via a 20-bit deserializer.

Each channel provides an input pin and a user-supplied reference input pin at the ELCO-56 connector.  When the ECU signal is connected to the input pin, it is tied to either the user-supplied reference voltage (USRx) or GND, through the programmed resistor set


The 20 individual resistance values are listed below. the current sensing circuitry adds a 0.47Ω resistance.

Resistance Position

Resistance Value

19

131072

18

65536

17

32768

16

16384

15

8192

14

4096

13

2048

12

1024

11

512

10

256

9

128

8

64

7

32

6

16

5

8

4

4

3

2

2

1

1

0.5

0

0.25

Termination voltage

For each channel, the user is able to select the termination voltage via a drop-down list in the RSM Configuration Panel. The three choices are Open, Ground, and User-Defined Voltage.

  • The inputs default state is Open circuit state and this is achieved by opening both of the termination voltages.
  • When User-Defined voltage is selected, the user must supply a reference voltage on the corresponding USRx input.

Both the Input and the User Supplied Termination voltage are Operating Voltage tolerant.  

Current direction protection 

A voltage comparator signals the current flow (I_DIR0) and the 4 input switch allows to select the current flow direction (DIR_?0) when operating between the Input and the User supply reference voltage. 

Power dissipation and over current protection 

Each input is able to support 1/4 watt of dissipation.  The table below illustrates the power range detection for all the resistor range.

As shown in the sensor diagram above, a sampling (SH0) and buffer (CAPON0) mechanism allows limiting the transition between resistor values within 5% overshoot/undershoot.  A current sense circuit monitors the current within the circuit and opens it when the power dissipation exceeds ¼ watt.  As power dissipation is function of the selected resistance, an Analog To Digital Converter (ADCK0, nADCS0, ISENSE0) is used to monitor the flowing current.  The control module monitors continuously the current. Upon detecting a fault, it reports an error and opens the circuit.

When an error condition is detected, the fault is reported via the model to the user interface. After removing the fault condition, the operator can acknowledge the fault from the RSM Run-Time Panel.  The fault is then cleared by the FPGA module if the condition is no longer present, otherwise, the fault is raised again.

Maximum voltage values for different patterns of resistances

RANGE

Res Reg

R

R real

Vmax

Imax

Vr

Vadc

 

 







0x1F

0

5.00

5.00

1.12

0.22

1.12

1387.72

0x13

1

0.24

5.24

1.14

0.22

1.09

1355.57

0x12

2

0.47

5.47

1.17

0.21

1.07

1326.76

0x12

3

0.71

5.71

1.19

0.21

1.05

1298.58

0x11

4

1.00

6.00

1.22

0.20

1.02

1266.81

0x11

7

1.71

6.71

1.30

0.19

0.97

1197.91

0x10

8

2.00

7.00

1.32

0.19

0.94

1172.84

0x10

F

3.71

8.71

1.48

0.17

0.85

1051.42

0xF

10

4.00

9.00

1.50

0.17

0.83

1034.34

0xF

1F

7.71

12.71

1.78

0.14

0.70

870.39

0xE

20

8.00

13.00

1.80

0.14

0.69

860.63

0xE

3F

15.71

20.71

2.28

0.11

0.55

681.86

0xD

40

16.00

21.00

2.29

0.11

0.55

677.14

0xD

7F

31.71

36.71

3.03

0.08

0.41

512.15

0xC

80

32.00

37.00

3.04

0.08

0.41

510.14

0xC

FF

63.71

68.71

4.14

0.06

0.30

374.35

0xB

100

64.00

69.00

4.15

0.06

0.30

373.56

0xB

1FF

127.71

132.71

5.76

0.04

0.22

269.36

0xA

200

128.00

133.00

5.77

0.04

0.22

269.07

0xA

3FF

255.71

260.71

8.07

0.03

0.15

192.18

0x9

400

256.00

261.00

8.08

0.03

0.15

192.07

0x9

7FF

511.71

516.71

11.37

0.02

0.11

136.51

0x8

800

512.00

517.00

11.37

0.02

0.11

136.47

0x8

FFF

1023.71

1028.71

16.04

0.02

0.08

96.75

0x7

1000

1024.00

1029.00

16.04

0.02

0.08

96.73

0x7

1FFF

2047.71

2052.71

22.65

0.01

0.06

68.49

0x6

2000

2048.00

2053.00

22.66

0.01

0.06

68.48

0x6

3FFF

4095.71

4100.71

32.02

0.01

0.04

48.46

0x5

4000

4096.00

4101.00

32.02

0.01

0.04

48.46

0x5

7FFF

8191.71

8196.71

45.27

0.01

0.03

34.27

0x4

8000

8192.00

8197.00

45.27

0.01

0.03

34.27

0x4

7FFF

16383.71

16388.71

64.01

0.00

0.02

24.24

0x3

10000

16384.00

16389.00

64.01

0.00

0.02

24.24

0x3

1FFFF

32767.71

32772.71

90.52

0.00

0.01

17.14

0x2

20000

32768.00

32773.00

90.52

0.00

0.01

17.14

0x2

3FFFF

65535.71

65540.71

128.00

0.00

0.01

12.12

0x1

40000

65536.00

65541.00

128.00

0.00

0.01

12.12

0x1

7FFFF

131071.71

131076.71

181.02

0.00

0.01

8.57

0x0

80000

131072.00

131077.00

181.02

0.00

0.01

8.57




OPAL-RT TECHNOLOGIES, Inc. | 1751, rue Richardson, bureau 1060 | Montréal, Québec Canada H3K 1G6 | opal-rt.com | +1 514-935-2323
Follow OPAL-RT: LinkedIn | Facebook | YouTube | X/Twitter