Documentation Home Page ePHASORSIM Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.

Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Current »

On this page:

Multiphase transformers can represent either a 1, 2, or 3-phase transformer. In the corresponding Excel tab, there are columns for declaration of up to 6 connection points (3 for Winding From end and 3 for Winding To end).

The sending and receiving connection points must be filled in correspondingly:

  • For example, if Winding From/Bus 1 is filled, Winding To/Bus 1 must be filled as well.

  • The unused connection points can be left empty. However, these empty fields must be located immediately after any completed connection point.
    For example, data in which Winding From/Bus 2 and Winding To/Bus 2 fields are filled out but Winding From/Bus 1 and Winding To/Bus 1 are empty is not valid and it causes an error.

Finally, the sending and receiving points can be connected to different phases. For example, Winding From/Bus 1 can be connected to phase A while Winding To/Bus 1 is connected to phase B.

In summary:

To represent a ...

Fill these columns to add connection points...

single-phase transformer

Only Winding From/Bus 1 and Winding To/Bus 1 columns.

two-phase transformer

The Winding From/Bus1 and Winding From/Bus 2 as well as Winding To/Bus 1 and Winding To/Bus 2.

three-phase transformer

The Winding From/Bus1, Winding From/Bus 2, Winding From/Bus 3 as well as Winding To/Bus 1, Winding To/Bus 2 and Winding To/Bus 3.

Multiphase 2W Transformer

Symbol

Description

Unit

ID

Transformer name

unique name

Status

Connect/Disconnect status

Initial value 1 (0 for disconnected)

Number of Phases

Phase count in use

1, 2, or 3

Winding From

Bus1

Primary side: Bus 1

a unique name

Bus2

Primary side: Bus 2

a unique name

Bus3

Primary side: Bus 3

a unique name

V (kV)

Primary winding nominal voltage (phase-to-phase)

kV

S_base (kVA)

Nominal power in primary side

kVA

Conn. type (*)

Primary winding connection type

‘wye’ and ‘delta’

Winding To

Bus1

Secondary side: Bus 1

a unique name

Bus2

Secondary side: Bus 2

a unique name

Bus3

Secondary side: Bus 3

a unique name

V (kV)

Secondary winding nominal voltage (phase-to-phase)

kV

S_base (kVA)

Nominal power in secondary side

NOT APPLICABLE

Conn. type (*)

Secondary winding connection type

‘wye’ and ‘delta’

Tap 1

Initial tap position: winding 1

Integer between Lowest and Highest Tap

Tap 2

Initial tap position: winding 2

Tap 3

Initial tap position: winding 3

Lowest Tap

The lowest tap position

Integer value

Highest Tap

The highest tap position

Integer value

Min Range (%)

Max voltage buck

0 < value < 100

Max Range (%)

Max voltage boost

value > 0

X (pu)

Total reactance

p.u.

Rw1 (p.u.)

Primary winding resistance

p.u.

Rw2 (p.u.)

Secondary winding resistance

p.u.

Multiphase 2W Transformer with Mutual Impedance

Symbol

Description

Unit

ID

Transformer name

a unique name

Status

Connect/Disconnect status

Initial value 1 (0 for disconnected)

Number of Phases

Phase count in use

1, 2, or 3

Winding From

Bus1

Primary side: Bus 1

a unique name

Bus2

Primary side: Bus 2

a unique name

Bus3

Primary side: Bus 3

a unique name

V (kV)

Primary winding nominal voltage (phase-to-phase)

kV

S_base (kVA)

Nominal power in primary side

kVA

Conn. type (*)

Primary winding connection type

‘wye’ and ‘delta’

Winding To

Bus1

Secondary side: Bus 1

a unique name

Bus2

Secondary side: Bus 2

a unique name

Bus3

Secondary side: Bus 3

a unique name

V (kV)

Secondary winding nominal voltage (phase-to-phase)

kV

S_base (kVA)

Nominal power in secondary side

NOT APPLICABLE

Conn. type (*)

Secondary winding connection type

‘wye’ and ‘delta’

Tap 1

Initial tap position: winding 1

Integer between Lowest and Highest Tap

Tap 2

Initial tap position: winding 2

Tap 3

Initial tap position: winding 3

Lowest Tap

The lowest tap position

Integer value

Highest Tap

The highest tap position

Integer value

Min Range (%)

Max voltage buck

0 < value < 100

Max Range (%)

Max voltage boost

value > 0

Z0 leakage (pu)

Zero-sequence impedance

transformer p.u.

Z1 leakage (pu)

Positive-sequence impedance

transformer p.u.

X0/R0

Zero-sequence reactance to resistance ratio

ratio

X1/R1

Positive-sequence reactance to resistance ratio

ratio

No Load Loss (kW)

No-load power loss

NOT APPLICABLE

Note: (*) Four types of winding configurations are supported:

  • DD0

  • YgYg0

  • DYg1

  • YgD1

Available I/O Pins

No

Pin Description

Pin Type

Value/Unit

Instruction

1

Get sending end current magnitude of wire j

O

A (RMS)

transformerID/ImagFromj

where j is 1, 2 or 3

2

Get receiving end current magnitude of wire j

O

A (RMS)

transformerID/ImagToj

where j is 1, 2 or 3

3

Get sending end current angle of wire j

O

Degree

transformerID/IangFromj

where j is 1, 2 or 3

4

Get receiving end current angle of wire j

O

Degree

transformerID/IangToj

where j is 1, 2 or 3

5

Set/Get tap position

I/O

Integer between [min_tap, max_tap]

transformerID/tap_j

where j is 1, 2 or 3

Model Equations 

This multiphase transformer is modeled based on the primitive nodal admittance matrix Yprim [1],[2]. 

Yprim = A N B ZB-1 BT NT AT  matrix dimension:  np*m x np*m, np = number of phases, m= number of windings  

Y1 = B ZB-1 BT   ;   Yw = N Y1 NT  ;   Yprim = A Yw AT

Y1 is the ground-referenced nodal admittance matrix on a 1 volt base. Matrix dimension: np*m x np*m

N is the incidence matrix whose non-zero elements are the inverse of the numbers of turns in the windings. This matrix represents the effect of the ideal transformers shown to obtain actual windings voltages. Matrix dimension: 2*np*m x np*m

B is the incidence matrix whose elements are either 1,-1 or 0. It relates currents in the short circuit reference frame where the first winding is assumed shorted to the currents in the nodal admittance reference frame on a 1 volt base. Matrix dimension: np*m x np

A is the incidence matrix whose non-zero elements are generally either 1 and -1, that relates the winding currents to the actual terminal currents. Matrix dimension: nc x 2*np*m, nc = number of terminal currents 

ZB is the short circuit impedance matrix. Matrix dimension: np*(m-1) x np*(m-1)

Yw is the winding admittance matrix. Matrix dimension: 2*np*m x 2*np*m

Examples

1) A single-phase 2W transformer with the following data:  7.2/0.12 kV, 25 kVA, X = 20%, R=1.1%

In this case np = 1, m = 2.

ZB in pu = 0.011+0.02i, ZB in 1V base = (ZB in pu)*12/25 kVA = 4.4e-7 + 8e-7i.  ZB-1= 527.831e3 - 959.692e3i 

Y1 = B ZB-1 BTB is a matrix [np*m=2 x np=1] 

B =

1

-1

Y1  =  

527.831e3 - 959.692e3i

-527.831e3+959.692e3i

-527.831e3+959.692e3i

527.831e3 - 959.692e3i

N is a matrix  [2*np*m=4 x np*m=2] 

N

1 /7200

0

-1 /7200

0

0

1/120

0

-1/120

Yw = N Y1 NT  =   

0.0102-0.0185i 

-0.0102+0.0185i

-0.6109+1.1108i 

0.6109-1.1108i

   -0.0102+0.0185i

  0.0102-0.0185i 

0.6109-1.1108i 

 -0.6109+1.1108i

-0.6109+1.1108i

0.6109-1.1108i 

36.6549-66.6453i

-36.6549+66.6453i

0.6109-1.1108i

-0.6109+1.1108i

-36.6549+66.6453i

 36.6549-66.6453i

To generate matrix A is necessary to define the number of terminal currents in the model. In this case there are 2 terminal currents (see the red currents in the figure above) so nc=2 and A matrix is [nc=2 x 2*np*m=4]

A =  

1

0

0

0

0

0

1

0

Finally the matrix Yprim is calculated

Yprim = A Yw AT  =  

0.0101-0.0185i 

 -0.6105+1.1100i

 -0.6105+1.1100i

 36.6007-66.5467i

Below it can be seen how to add this single-phase transformer in the excel file. The total resistance was divided equally between the 2 windings (RW1 =  RW2 = 0.011 pu/2 = 0.0055 pu). Note that the voltages voltages must be added as phase to phase voltages even though the model is single-phase (according to the table above)


2) A three-phase 2W transformer with the following data:  12.47/0.208 kV (wye/delta), 75 kVA, X = 20%, R=1.1%

In this case np = 3, m = 2.


ZB in pu = 0.011+0.02i, ZB in 1V base = (ZB in pu)*12/75 kVA = 1.4667e-7 + 2.6667e-7i.  ZB-1= 158.349e3 - 287.907e3i (ohms-1)

Y1 = B ZB-1 BT ;  B is a matrix [np*m=6 x np=3] 

B =

1

0

0

-1

0

0

0

1

0

0

-1

0

0

0

1

0

0

-1

Y1  =  

158.349e3 - 287.907e3i

-158.349e3 + 287.907e3i

0

0

0

0

-158.349e3 + 287.907e3i

158.349e3 - 287.907e3i

0

0

0

0

0

0

158.349e3 - 287.907e3i

-158.349e3 + 287.907e3i

0

0

0

0

-158.349e3 + 287.907e3i

158.349e3 - 287.907e3i

0

0

0

0

0

0

158.349e3 - 287.907e3i

-158.349e3 + 287.907e3i

0

0

0

0

-158.349e3 + 287.907e3i

158.349e3 - 287.907e3i

N is a matrix  [2*np*m=12 x np*m=6] 

N

1 /12470

0

0

0

0

0

-1 /12470

0

0

0

0

0

0

1/(208*sqrt(3))

0

0

0

0

0

-1/(208*sqrt(3))

0

0

0

0

0

0

1 /12470

0

0

0

0

0

-1 /12470

0

0

0

0

0

0

1/(208*sqrt(3))

0

0

0

0

0

-1/(208*sqrt(3))

0

0

0

0

0

0

1 /12470

0

0

0

0

0

-1 /12470

0

0

0

0

0

0

1/(208*sqrt(3))

0

0

0

0

0

-1/(208*sqrt(3))

Yw = N Y1 NT  =   

0.0102-0.0185i 

-0.0102+0.0185i

-0.3525+0.6409i

0.3525-0.6409i

0

0

0

0

0

0

0

0

   -0.0102+0.0185i

  0.0102-0.0185i 

0.3525-0.6409i

 -0.3525+0.6409i

0

0

0

0

0

0

0

0

-0.3525+0.6409i

0.3525-0.6409i

12.2002-22.1823i

-12.2002+22.1823i

0

0

0

0

0

0

0

0

0.3525-0.6409i

-0.3525+0.6409i

-12.2002+22.1823i

12.2002-22.1823i

0

0

0

0

0

0

0

0

0

0

0

0

0.0102-0.0185i 

-0.0102+0.0185i

-0.3525+0.6409i

0.3525-0.6409i

0

0

0

0

0

0

0

0

   -0.0102+0.0185i

  0.0102-0.0185i 

0.3525-0.6409i

 -0.3525+0.6409i

0

0

0

0

0

0

0

0

-0.3525+0.6409i

0.3525-0.6409i

12.2002-22.1823i

-12.2002+22.1823i

0

0

0

0

0

0

0

0

0.3525-0.6409i

-0.3525+0.6409i

-12.2002+22.1823i

12.2002-22.1823i

0

0

0

0

0

0

0

0

0

0

0

0

0.0102-0.0185i 

-0.0102+0.0185i

-0.3525+0.6409i

0.3525-0.6409i

0

0

0

0

0

0

0

0

-0.0102+0.0185i

0.0102-0.0185i 

0.3525-0.6409i

 -0.3525+0.6409i

0

0

0

0

0

0

0

0

-0.3525+0.6409i

0.3525-0.6409i

12.2002-22.1823i

-12.2002+22.1823i

0

0

0

0

0

0

0

0

0.3525-0.6409i

 -0.3525+0.6409i

-12.2002+22.1823i

12.2002-22.1823i

To generate matrix A is necessary to define the number of terminal currents in the model. In this case there are 6 terminal currents (see figure above) so nc=6 and A matrix is [nc=6 x 2*np*m=12]

A =  

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

Yprim = A Yw AT  =  

0.0101-0.0185i 

0

0

-0.3524+0.6408i

0.3524-0.6408i

0

0

0.0101-0.0185i 

0

0

-0.3524+0.6408i

0.3524-0.6408i

0

0

0.0101-0.0185i 

0.3524-0.6408i

0

-0.3524+0.6408i

-0.3524+0.6408i

0

0.3524-0.6408i

24.4004-44.3645i

-12.2002+22.1822i

-12.2002+22.1822i

0.3524-0.6408i

-0.3524+0.6408i

0

-12.2002+22.1822i

24.4004-44.3645i

-12.2002+22.1822i

0

0.3524-0.6408i

-0.3524+0.6408i

-12.2002+22.1822i

-12.2002+22.1822i

24.4004-44.3645i

The following image shows how to add this component in the excel file. 

3) Multiple transformers in the same model

See the Transformer page in phasor08_IEEE13.xlsx file in ePHASORSIM example phasor08.

References

[1] Roger C. Dugan, "A Perspective on Transformer Modeling for Distribution Systems Analysis". 2003 IEEE Power Engineering Society General Meeting. DOI: 10.1109/PES.2003.1267146

[2] Roger C. Dugan and Surya Santoso, "An Example of 3-phase Transformer Modeling for Distribution Systems Analysis". 2003 IEEE PES Transmission and Distribution Conference and Exposition. DOI: 10.1109/TDC.2003.1335084

  • No labels