Documentation Home Page HYPERSIM Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.

Quick Start | Load Flow


Overview

Load flow is implemented so that users can start a simulation from a steady-state condition. It is an analysis to determine the voltages, currents, real and reactive power flows under a given operating condition. Given the system admittance matrix, 4 variables (P, Q, V, theta) are associated with each bus to solve two power flow equations. Therefore, for each node, at least 2 out of the 4 variables should be known to solve the equations.

For background, see IEEE Std 3002.2™-2018 Recommended Practice for Conducting Load-Flow Studies and Analysis of Industrial and Commercial Power Systems.

For the use of different HYPERSIM components in load flow analysis, see Load Flow | Configuration of Components.

Open the Quick Start Reference Model

Launch HYPERSIM and load the model Load_Flow.ecf found under Options > Open an example model > How To.

image-20240801-150055.png

Build the Model

Ensure that all pertinent values have been entered when building the model (e.g. for voltage sources, ensure that you have defined both Base voltage and impedance values). Base power and Base voltage are important if voltage or impedance value is determined per unit.

After all the parameters are configured and all the connections are made, the model is ready for load flow execution.

Without a load flow solution, all the signals in the model would start from 0. Starting with a load flow solution initializes the model from steady-state values.

If you click on a bus in the example model where load flow has not yet been calculated, you will see default values in the load flow results tab.

 

If you click on a generator, you will see the default values for Angular frequency, Voltage, Active power, and Reactive power.

Configure the Generation

Once the model is ready, relevant generator/source parameters must be defined so HYPERSIM can solve them in the load flow analysis.

First, choose the bus types for generators and sources, then configure the active power, voltage, and angle as required: see below.

Step 1: Determine the swing bus

There should be a source/generator that serves as the swing bus, with a given voltage and angle, to provide/absorb any mismatch between the load and generation in the system. 

Double-click on voltage source VS2, in the Load Flow tab, select the Type to be Swing. Specify Voltage to be 1 pu and Angle to be 0 deg.

Remember there should be only one swing bus in a network.

Step 2: Configure the other sources

Similarly, configure the other generators/sources in the model. Usually, a generator bus is a PV bus because the generator controller regulates its terminal voltage and active power. 

Double-click on synchronous machine SM1, in the Load Flow tab, and select the Type to be PV. Specify Voltage to be 1 pu and Active power to be 30 MW.

Similarly, configure VS1, SM2 and SM3 as PV buses with the following parameters in the Load Flow tab:

Component

Type

V (pu)

P (MW)

Component

Type

V (pu)

P (MW)

SM1

PV

1

30

SM2

PV

1

30

SM3

PV

1

30

VS1

PV

1

0

The unit prefix may be changed by right-clicking the unit and selecting the desired prefix.

Entering the Bus Voltage Level

To execute the loa’s nominal voltages, it defines the voltage of all the buses connected to each side of the transformer.

  • For example, in this model, to access, click the HYPERSIM tab and click Netlist. 

  • Once the Netlist window pops up, select Base Voltage from the Views drop-down menu.

  • Each transformer’s primary, secondary and tertiary base voltages are already configured based on the transformers' voltage settings in the network model.

  • Specify the Primary Bus Voltage and Secondary Bus Voltage accordingly. If a tertiary bus is present, configure it as well. There is a drop-down menu with common voltage levels which you can choose from.

 

  • If the secondary buses of several transformers are connected, defining one bus will automatically define the others. After the configuration, it should look like this:

 

  • Now if you go back to the model and double-click a bus, the nominal voltage is defined.

Step 3: Defining in Netlist - Load Flow Parameters

When there is no transformer, it means all buses are at the same voltage level. You could launch Netlist, then select Load Flow Parameters from the Views drop-down menu. 

Then you could define the Nominal voltage of all buses. Copy and paste works here!

Run the Load Flow

Open the Load flow, from the HYPERSIM Ribbon Options under Network.

Step 4: Load flow options

The Load Flow window opens. In the Load flow execution section, there are several load flow options and parameters:

 

Bouton

Bouton

Analyse

Analyze the network topology. If there are changes in the model, Analyze updates the netlist and the load flow input data.

Load Flow

Execute the load flow analysis, a short load flow report will be returned to the log. This step also sets initial conditions to all the buses and components in the model.

The Execute Load Flow function automatically executes the Analyze function.

Set initial conditions

This is to Initialize conditions at the simulation start. Therefore, the simulation will start from a steady-state condition.

XML Report

Display Load Flow report as XML file in the Report Tab

Txt Report

Display Load Flow report as text file in the Output tab

Parameters

Frequency (Hz)

The nominal frequency of the power system model.

Power base (MVA)

The power base when displaying power in PU.

PQ tolerance (MVA)

The load flow convergence tolerance.

Max iterations

The maximum number of iterations for the load flow algorithm to search for a convergent solution.

Deceleration factor

Usually set to 1 for most cases, this parameter is used only when iteration is necessary to find a solution. Decreasing its value reduces the size of the variation between two iterations.

Use Qmin and Qmax limits

If this option is checked, the Q limits specified in each component's load flow tab are used as constraints when solving the load flow equations.

Report & Output Section

Display Options > units

  • pu Voltage: Display the voltage in PU according to the base voltages.

  • pu Power: Display the power in PU according to the Power base.

Display Options > digits

The number of digits after the decimal points can be adjusted between 3, 6, 9 and 12, to show more precise results.

Output

This tab displays the parameters used to calculate the loadflow. For example:

=========================================================================================================================================== <?xml version="1.0" encoding="UTF-8"?> <loadflow design="Load_Flow.exe" date="" freq="60" Pbase="100" useQlimits="false" tolerancePQ="5" maxIteration="60" decelerationFactor="1"> <buses/> </loadflow> ===========================================================================================================================================

Step 5: Load flow execution

Load flow execution parameters do not need to be changed for this example. Once all input parameters have been verified, proceed to perform the load flow analysis.

Hit the Load Flow button located in the upper part of the load flow window. This step also sets initial conditions for all the buses and components in the model.

You can see the result report abstract in the Output tab.

Click on the XML Report button to generate the Report. Then click on Load_Flow.exe in the report tab to see the summary and the values at each bus.

or click on the Txt Report button to display the report in the output tab:

==================== Bus summary ==================== Bus Vbase (kV rms LL) Bus1 230.000 Bus10 230.000 Bus11 230.000 Bus12 230.000 Bus13 230.000 Bus14 13.800 Bus15 13.800 Bus16 13.800 Bus2 110.000 Bus3 110.000 Bus4 110.000 Bus5 110.000 Bus5_1 110.000 Bus6 110.000 Bus7 110.000 Bus8 110.000 Bus9 230.000 Total: 17 buses ==================== Generation summary ==================== Bus Component Type V (kV rms LL, deg) P (MW) Q (Mvar) Qmin (Mvar) Qmax (Mvar) Bus1 VS1 PV 230.000 ----- 0.000 ----- -999.000 999.000 Bus13 VS2 Swing 230.000 @ 0.000 ----- ----- -999.000 999.000 Bus14 SM2 PV 13.800 ----- 30.000 ----- -999.000 999.000 Bus15 SM3 PV 13.800 ----- 30.000 ----- -999.000 999.000 Bus16 SM1 PV 13.800 ----- 30.000 ----- -999.000 999.000 ------------ ------------ Total [ 5 generator(s)]: 90.000 0.000 ==================== Shunt impedance summary ==================== Bus Component Vbase (kV rms LL) P (MW) Q (Mvar) Bus10 Load_10 230.000 19.980 -0.000 Bus11 Load_11 230.000 19.980 -0.000 Bus14 Snubber_14 13.800 0.990 -9.991 Bus15 Snubber_15 13.800 0.990 -9.991 Bus16 Snubber_16 13.800 0.990 -9.991 Bus7 Load_7 110.000 19.985 -0.000 Bus9 Load_9 230.000 19.980 -0.000 ------------ ------------ Total [ 7 element(s)]: 82.896 -29.973 =========================================================================================================================================== ==================== Bus report ==================== Node Bus1 (no 0) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 230.000 @ 3.474 0.000 -56.255 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus1 Bus2 Tr1 -36.123 -6.094 Bus1 Bus9 L1_2 35.370 -50.762 Node Bus10 (no 1) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 240.098 @ 0.556 0.000 0.000 0.000 0.000 21.773 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus10 Bus11 L1_7 20.805 -18.504 Bus10 Bus9 L1_5 -42.578 18.504 Node Bus11 (no 2) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 240.687 @ -0.174 0.000 0.000 0.000 0.000 21.880 -0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus11 Bus10 L1_7 -20.793 -9.013 Bus11 Bus12 L1_8 -1.088 9.013 Node Bus12 (no 3) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 237.347 @ -0.107 0.000 0.000 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus12 Bus11 L1_8 1.101 -36.172 Bus12 Bus13 L1_9 -1.101 36.172 Node Bus13 (no 4) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 230.000 @ 0.000 1.159 -60.900 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus13 Bus12 L1_9 1.159 -60.900 Node Bus14 (no 5) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 13.800 @ 12.859 30.000 -18.019 0.000 0.000 0.990 -9.991 Detail Source Destination Component P (MW) Q (Mvar) Bus14 Bus7 Tr3 28.395 -8.628 Node Bus15 (no 6) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 13.800 @ 15.175 30.000 -16.303 0.000 0.000 0.990 -9.991 Detail Source Destination Component P (MW) Q (Mvar) Bus15 Bus8 Tr4 28.400 -6.912 Node Bus16 (no 7) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 13.800 @ 34.487 30.000 -25.317 0.000 0.000 0.990 -9.991 Detail Source Destination Component P (MW) Q (Mvar) Bus16 Bus9 Tr2 28.318 -15.926 Node Bus2 (no 8) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 111.156 @ -23.452 0.000 0.000 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus2 Bus1 Tr1 36.123 8.107 Bus2 Bus3 BR1 -24.014 -2.415 Bus2 Bus4 BR2 -12.108 -5.692 Node Bus3 (no 9) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 111.156 @ -23.452 0.000 0.000 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus3 Bus2 BR1 24.014 2.415 Bus3 Bus5 L1_1 -24.014 -2.415 Node Bus4 (no 10) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 111.156 @ -23.452 0.000 0.000 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus4 Bus2 BR2 12.108 5.692 Bus4 Bus5_1 L1_6 -12.108 -5.692 Node Bus5 (no 11) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 111.512 @ -19.549 0.000 0.000 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus5 Bus3 L1_1 24.074 -1.907 Bus5 Bus7 BR3 -24.074 1.907 Node Bus5_1 (no 12) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 112.217 @ -21.515 0.000 0.000 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus5_1 Bus4 L1_6 12.125 0.130 Bus5_1 Bus6 L1_4 -12.125 -0.130 Node Bus6 (no 13) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 111.513 @ -19.549 0.000 0.000 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus6 Bus5_1 L1_4 12.141 -5.456 Bus6 Bus7 BR4 -12.141 5.456 Node Bus7 (no 14) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 111.513 @ -19.549 0.000 0.000 0.000 0.000 20.539 -0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus7 Bus14 Tr3 -28.395 9.950 Bus7 Bus5 BR3 24.074 -1.907 Bus7 Bus6 BR4 12.141 -5.456 Bus7 Bus8 L1_3 -28.358 -2.587 Node Bus8 (no 15) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 111.230 @ -17.240 0.000 0.000 0.000 0.000 0.000 0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus8 Bus15 Tr4 -28.400 8.193 Bus8 Bus7 L1_3 28.400 -8.193 Node Bus9 (no 16) Summary V (kV rms LL, deg) Pgen (MW) Qgen (Mvar) Pload (MW) Qload (Mvar) Pshunt (MW) Qshunt (Mvar) 235.678 @ 2.111 0.000 0.000 0.000 0.000 20.979 -0.000 Detail Source Destination Component P (MW) Q (Mvar) Bus9 Bus1 L1_2 -35.303 26.473 Bus9 Bus10 L1_5 42.643 -43.983 Bus9 Bus16 Tr2 -28.318 17.510 ==================== Generation report ==================== Bus Component Type Vbase (kV rms LL) V (kV rms LL, deg) P (MW) Q (Mvar) Vint (kV rms LL, deg) I (kA peak LG, deg) Bus1 VS1 PV 230.000 230.000 @ 3.474 0.000 -56.255 228.471 @ 3.529 0.200 @ 93.474 Bus13 VS2 Swing 230.000 230.000 @ 0.000 1.159 -60.900 228.350 @ 0.067 0.216 @ 88.910 Bus14 SM2 PV 13.800 13.800 @ 12.859 30.000 -18.019 13.374 @ 15.873 2.071 @ 43.850 Bus15 SM3 PV 13.800 13.800 @ 15.175 30.000 -16.303 13.417 @ 18.180 2.020 @ 43.696 Bus16 SM1 PV 13.800 13.800 @ 34.487 30.000 -25.317 13.193 @ 37.541 2.323 @ 74.648 ------------ ------------ Total [ 5 generator(s)]: 91.159 -176.795 ==================== Shunt report ==================== Bus Component Vbase (kV rms LL) V (kV rms LL, deg) P (MW) Q (Mvar) Bus10 Load_10 230.000 240.098 @ 0.556 21.773 0.000 Bus11 Load_11 230.000 240.687 @ -0.174 21.880 -0.000 Bus14 Snubber_14 13.800 13.800 @ 12.859 0.990 -9.991 Bus15 Snubber_15 13.800 13.800 @ 15.175 0.990 -9.991 Bus16 Snubber_16 13.800 13.800 @ 34.487 0.990 -9.991 Bus7 Load_7 110.000 111.513 @ -19.549 20.539 -0.000 Bus9 Load_9 230.000 235.678 @ 2.111 20.979 -0.000 ------------ ------------ Total [ 7 elements(s)]: 88.141 -29.973 ============================ Summary ============================ P (MW) Q (Mvar) Generation total 91.159 -176.795 Load total 0.000 0.000 Shunt total 88.141 -29.973 Difference 3.018 -146.821 ===========================================================================================================================================

Now, if you double-click source VS1, the Amplitude and Angle are updated.

If you double-click on SM1, the Angular frequency, Voltage, Active power and Reactive power are updated to load flow solution values.

If you double-click on a bus, the data in Load Flow Results tab are updated based on the load flow solution. Take Bus14 as an example:

The load flow parameters can also be viewed in Netlist - Load Flow Parameters.

The updated values are used by HYPERSIM once the simulation is launched to start from steady-state conditions.

Additional Information


 

OPAL-RT TECHNOLOGIES, Inc. | 1751, rue Richardson, bureau 1060 | Montréal, Québec Canada H3K 1G6 | opal-rt.com | +1 514-935-2323
Follow OPAL-RT: LinkedIn | Facebook | YouTube | X/Twitter