Example Model Execution and Test results

Documentation Home Page Specialized Solutions Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.

Example Model Execution and Test results

Page Content

In order to run the example model, the following steps must be passed. The model execution provided below includes several test scenarios to convert different control aspects of a PELab unit.

Test sequences and scenarios

image-20240403-205116.png
Figure 16. Demo model opened in RT-LAB environment
  • Build and run the model in RT-LAB

  • Set the maximum voltage of the DC power supply to 500 V and current to 15 A

  • Set the voltage rise time to 15 s or any equivalent slew rate which will ensure smooth pre-charge of the DC-link capacitors

  • Enable the output of the DC power supply and wait until the voltage reaches to 500 V. On the “Voltages” scope, the following results must be observed

V_all-20240403-182154.PNG
Figure 17. Status of the voltages after pre-charging the DC links of the PELab power modules
  • Set the reference signal of both power modules to 60 Hz

image-20240403-214047.png
Figure 18. Reference frequency of the first module
image-20240403-214114.png
Figure. 19. Reference frequency of the second module
  • Set the switching frequency to 20 kHz for both power modules

image-20240403-214454.png
Figure 20. Switching frequency of the first module
image-20240403-214532.png
Figure 21. Switching frequency of the second module
  • Increase the modulation index of both modules to 0.5

image-20240404-133742.png
Figure 22. Modulation index of the first module
image-20240404-133825.png
Figure 23. Modulation index of the second module
  • Enable the PWM modulators for both power modules

image-20240403-215722.png
Figure 24. Enable button of the PWM modulator for the first power module
image-20240403-215824.png
Figure 25. Enable button of the PWM modulator for the second power module
  • Observe the modulation index of each module through the following scopes. The index must be the same as the reference

image-20240403-220128.png
Figure 26. Monitoring scope for the modulation index of the first power module
image-20240403-220323.png
Figure 27. Monitoring scope for the modulation index of the second power module
Figure 28. Modulation index of the first power module
Figure 29. Modulation index of the second power module
  • Monitor the voltages and currents using the dedicated scopes in the console

Figure 30. Voltages of both power modules
Figure 31. Currents of both power modules
  • Use an oscilloscope (Tektronix was used in this demo) to monitor the phase voltage, line-to-line voltage, and phase current of the first power module

Figure 32. Phase voltage (yellow), line-to-line voltage (blue), and phase current (purple)
  • Set the switching frequency to 30 kHz for the first power modules

image-20240404-133609.png
Figure 33. Switching frequency of the first module
  • Prepare an oscilloscope (Tektronix was used in this demo) in triggered single mode

  • While operating the system with the previous setting, increase the modulation index of the first module from 0.5 to 0.9

image-20240403-213808.png
Figure 34. Modulation index of the first module
  • Monitor the transient effect of the modulation index variation on the phase voltage, line-to-line voltage, and phase current of the power module using the oscilloscope

Figure 35. Phase voltage (yellow), line-to-line voltage (blue), and phase current (purple)
  • Reduce the modulation index of the first power module to 0.8

image-20240404-135009.png
Figure 36. Modulation index of the first module
  • Reduce the switching frequency of the first module to 10 kHz

image-20240404-135124.png
Figure 37. Switching frequency of the first module
  • Prepare the oscilloscope (Tektronix was used in this demo) in triggered single mode

  • Increase the switching frequency of the first module from 10 kHz to 40 kHz

  • Monitor the transient effect of the switching frequency variation on the phase voltage, line-to-line voltage, and phase current of the power module using the oscilloscope

Scope_Vph_VBC_ia_M2_10kHz_to_40kHz-20240403-185753.png
Figure 38. Phase voltage (yellow), line-to-line voltage (blue), and phase current (purple)
  • Prepare the oscilloscope (Tektronix was used in this demo) in triggered single mode

  • While maintaining the same operational condition of the previous test, increase the reference frequency of the first power module from 60 Hz to 120 Hz.

  • Monitor the transient effect of the reference frequency variation on the phase voltage, line-to-line voltage, and phase current of the power module using the oscilloscope

Scope_Vph_VBC_ia_M2_60Hz_to_120Hz-20240403-190114.png
Figure 39. Phase voltage (yellow), line-to-line voltage (blue), and phase current (purple)

Shutdown Sequences

To shut down the test bench, the following sequences must be considered:

  • Reduce the modulation index of both power modules to 0.1. This step helps to gradually discharge the capacitors through the loads.

image-20240404-141131.png
Figure 40. Modulation index of the first module
image-20240404-141245.png
Figure 41. Modulation index of the second module
  • Disable or shut down the main DC power supply.

Please note that the PWM modulators are still operating to discharge the capacitors through the load

  • Disable the PWM modulators

image-20240404-142857.png
Figure 42. Disable button of the PWM modulator for the first module
image-20240404-142928.png
Figure 43. Disable button of the PWM modulator for the first module
  • Reset the model in RT-LAB

image-20240404-143326.png
Figure 44. Reset button of the model in RT-LAB

Demo File

  File Modified

ZIP Archive PELab6PH_Demo.zip

Apr 19, 2024 by Sylvain Ménard

OPAL-RT TECHNOLOGIES, Inc. | 1751, rue Richardson, bureau 1060 | Montréal, Québec Canada H3K 1G6 | opal-rt.com | +1 514-935-2323
Follow OPAL-RT: LinkedIn | Facebook | YouTube | X/Twitter