Documentation Home Page HYPERSIM Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.

ST2A



Description

This module is based on the IEEE std 412.5 type ST2A excitation system model [1]. The excitation system uses both terminal current and terminal voltage. The effects of commutation and rectifier loading are account in the model.

Mask and Parameters

AVR Parameters

 ST2A- AVR mask parameters


Expanding the "ST2A diagram" displays the block diagram in the parameters window.

ST2A AVR block diagram

 

NameDescriptionUnit

Tr

Regulator input filter time constant


pu

Kf

Excitation control system stabilizer gain


pu

Tf

Excitation control system stabilizer time constant


pu

Ka

Voltage regulator gain


pu

Ta

Regulator time constant


pu

Vrmax

Maximum voltage regulator output


pu

Vrmin

Minimum voltage regulator output


s


Exciter Parameters


Expanding the "Exciter diagram" displays the block diagram in the parameters window.

ST2A- Exciter diagram

NameDescriptionUnit

Te

Exciter time constant


s

Ke

Exciter constant related to self-excited field


-

Kc

Rectifier loading factor proportional to commutating reactance


-

EFDmax

Maximum exciter output voltage


pu

Kp

Potential circuit real part gain coefficient


-

Kj

Potential circuit imaginary part gain coefficient


-

Initial Values Mask Parameters

ST2A- Initial Values mask parameters

Name

Unit

Description

Ifd0

pu

Synchronous machine field current initial value

Efd0

pu

Exciter output voltage initial value


The parameters Ifd0 and Efd0 can be set manually by entering a numerical value. It can also be set automatically, based on load flow calculations, by entering a referenced synchronous machine variable.  For instance, if the name of the synchronous machine on which the excitation system is connected is “SM1”:

  • If a thermal machine or a hydraulic machine is used, Ifd0 shall be set as “=SM1.IfdInit” multiplied by the synchronous machine parameter Xad = Xd – Xl, and Efd0 shall be set as “=SM1.EfdInit”;
  • If a pu standard or pu fundamental machine is used, Ifd0 shall be set as “=SM1.IF_Init” and Efd0 shall be set as "=SM1.EFD_Init".

The HYPERSIM simulation option Set Initial Conditions must be checked for the automatic initialization to work properly.


Inputs and Outputs and Signals Available for Monitoring

Inputs

NameDescriptionUnit

Voel

Overexcitation limiter output*

pu

Vc1

Signal proportional to compensated terminal voltage

If the Load Compensator block is not used upstream from the exciter block, then Vc1 is equal to Vt (main alternator terminal voltage)

pu

Vuel

Underexcitation limiter output*

pu

Vref

Voltage regulator reference voltage

pu

Vs

Is defined as the output voltage of a Power System Stabilizer (PSS) [1].

pu

Ifd

Synchronous machine field current**

pu

Id

Active component of generator terminal current or component from load compensator

pu

Iq

Reactive component of generator terminal current or component from load compensator


Vd

Active component of generator terminal voltage or component from load compensator


Vq

Reactive component of generator terminal voltage or component from load compensator


*Vuel and Voel is normally an input to this excitation system but the user has the option to use a fixed constant value directly in the mask by choosing internal in the mask option.

*A switch allows the users to select UEL input locations (Vuel)

  • Summation point ( voltage error )
  • Take-over at voltage regulator input

**If a Synch. Machine (Hydraulic or Thermal) from the Network Machines and Generators library is used, the machine observable Ifd must be multiplied by the synchronous machine parameter Xad = Xd – Xl prior to its input to the exciter. This multiplication is not needed if a Synchronous Machine (pu Standard) or (pu Fundamental) is used.

Outputs

NameDescriptionUnit
 Efd Exciter output voltagepu

References

1. “IEEE Recommended Practice for Excitation System Models for Power System Models for Power System Stability Studies,” IEEE Standard 421.5-2005.

OPAL-RT TECHNOLOGIES, Inc. | 1751, rue Richardson, bureau 1060 | Montréal, Québec Canada H3K 1G6 | opal-rt.com | +1 514-935-2323