Documentation Home Page ◇ HYPERSIM Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.
AC7B
Model Description
This device is an implementation of the IEEE type AC7B excitation system model. It is implemented as described in [1].
The AC7B model was developed in line with the references [1-3]. Figure 1 shows the architecture of the AC7B model.
Model in HYPERSIM
Figure 2 below shows the AC7B component model in HYPERSIM, and Figure 3 shows the parameters.
Input/Output: AC7B Input/Output Parameters
Pin name | Type | Description | Units |
Vref | Input | Reference voltage of the stator terminal voltage | pu |
Vc1 | Input | Terminal voltage of synchronous machine, transducer output | |
Vs | Input | Power System Stabilizer signal | |
Vt | Input | Terminal voltage of synchronous machine | |
Ifd | input | Synchronous machine field current* | |
Vuel | Input | Under Excitation Limiter signal | |
Efd | Output | The field voltage signal |
*If a Synch. Machine (Hydraulic or Thermal) from the Network Machines and Generators library is used, the machine observable Ifd must be multiplied by the synchronous machine parameter Xad = Xd – Xl prior to its input to the exciter. This multiplication is not needed if a Synchronous Machine (pu Standard) or (pu Fundamental) is used.
AC7B AVR Tab: Parameters
AC7B Exciter Tab: Parameters
AC7B Initial Values Tab: Parameters
Default Parameters of HYPERSIM Model
The default parameters of the model developed in HYPERSIM are given in the table below.
AC7B AVR Parameters
Parameter | Unit | Description |
---|---|---|
KPA | pu | field current regulator proportional gain |
KIA | pu/s | field current regulator integral gain |
VAmax | pu | maximum field current regulator output |
VAmin | pu | minimum field current regulator output |
KPR | s | voltage regulator proportional gain |
KIR | pu/s | voltage regulator integral gain |
KDR | pu/s | voltage regulator derivative gain |
TDR | s | lag time constant for derivative channel of PID controller |
VRmax | pu | maximum regulator output |
VRmin | pu | minimum regulator output |
Kp | pu | potential circuit gain coefficient |
KL | pu | gain related to negative exciter field current capability |
AC7B Excitor Parameters
Parameter | Unit | Description |
---|---|---|
KE | pu | exciter gain |
TE | s | exciter time constant |
KF1 | pu | excitation control system stabilizer gain |
KF2 | pu | |
KF3 | pu | |
TF | s | excitation control system stabilizer time constant |
VFEMAX | pu | exciter field current limit |
VFEMIN | pu | minimum of exciter voltage back of commutating reactance |
KD | pu | demagnetizing factor |
KC | pu | rectifier loading factor |
VE1 | pu | The exciter voltage point which is near the exciter ceiling voltage |
VE2 | pu | The exciter voltage point which is near 75% of VE1 |
SE_VE1 | pu | The exciter saturation function value at VE1 |
SE_VE2 | pu | The exciter saturation function value at VE2 |
AC7B initial value parameters
The parameters Ifd0 and Efd0 can be set manually by entering a numerical value. It can also be set automatically, based on load flow calculations, by entering a referenced synchronous machine variable. For instance, if the name of the synchronous machine on which the excitation system is connected is “SM1”
- If a thermal machine or a hydraulic machine is used, Ifd0 shall be set as “=SM1.IfdInit” multiplied by the synchronous machine parameter Xad = Xd – Xl, and Efd0 shall be set as “=SM1.EfdInit”;
- If a pu standard or pu fundamental machine is used, Ifd0 shall be set as ��=SM1.IF_Init” and Efd0 shall be set as "=SM1.EFD_Init".
The HYPERSIM® simulation option Set Initial Conditions must be checked for the automatic initialization to work properly.
References
- “IEEE Recommended Practice for Excitation System Models for Power System Models for Power System Stability Studies,” IEEE Standard 421.5-2005.
- Kundur, “Power System Stability and Control”, McGraw-Hill 1994
- Standard Dynamic Turbine-Governor Systems in NEPLAN Power System Analysis Tool
- PSSE Explore 34 Siemens software
OPAL-RT TECHNOLOGIES, Inc. | 1751, rue Richardson, bureau 1060 | Montréal, Québec Canada H3K 1G6 | opal-rt.com | +1 514-935-2323
Follow OPAL-RT: LinkedIn | Facebook | YouTube | X/Twitter