Documentation Home Page HYPERSIM Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.

AC7B


Model Description

This device is an implementation of the IEEE type AC7B excitation system model. It is implemented as described in [1].

The AC7B model was developed in line with the references [1-3]. Figure 1 shows the architecture of the AC7B model.


FIgure 1 AC7B Architecture

Model in HYPERSIM

Figure 2 below shows the AC7B component model in HYPERSIM, and Figure 3 shows the parameters.

Figure 2 AC7B Block in HYPERSIM

Input/Output: AC7B Input/Output Parameters

Pin name

Type

Description

Units

Vref

Input

Reference voltage of the stator terminal voltage

pu


Vc1

Input

Terminal voltage of synchronous machine, transducer output

Vs

Input

Power System Stabilizer signal

Vt

Input

Terminal voltage of synchronous machine

Ifd

input

Synchronous machine field current*

Vuel

Input

Under Excitation Limiter signal

Efd

Output

The field voltage signal

*If a Synch. Machine (Hydraulic or Thermal) from the Network Machines and Generators library is used, the machine observable Ifd must be multiplied by the synchronous machine parameter Xad = Xd – Xl prior to its input to the exciter. This multiplication is not needed if a Synchronous Machine (pu Standard) or (pu Fundamental) is used.

AC7B AVR Tab: Parameters

Figure 3 AC7B data parameters

AC7B Exciter Tab: Parameters

Figure 4A exciter parameters

Figure 4A exciter parameters

AC7B Initial Values Tab: Parameters

Figure 5 AC7B initialization parameters

Default Parameters of HYPERSIM Model

The default parameters of the model developed in HYPERSIM are given in the table below.

AC7B AVR Parameters

Parameter

Unit

Description

KPA

pu

field current regulator proportional gain

KIA

pu/s

field current regulator integral gain

VAmax

pu

maximum field current regulator output

VAmin

pu

minimum field current regulator output

KPR

s

voltage regulator proportional gain

KIR

pu/s

voltage regulator integral gain

KDR

pu/s

voltage regulator derivative gain

TDR

s

lag time constant for derivative channel of PID controller

VRmax

pu

maximum regulator output

VRmin

pu

minimum regulator output

Kp

pu

potential circuit gain coefficient

KL

pu

gain related to negative exciter field current capability

AC7B Excitor Parameters

Parameter

Unit

Description

KE

pu

exciter gain

TE

s

exciter time constant

KF1

pu

excitation control system stabilizer gain


KF2

pu

KF3

pu

TF

s

excitation control system stabilizer time constant

VFEMAX

pu

exciter field current limit

VFEMIN

pu

minimum of exciter voltage back of commutating reactance

KD

pu

demagnetizing factor

KC

pu

rectifier loading factor

VE1

pu

The exciter voltage point which is near the exciter ceiling voltage

VE2

pu

The exciter voltage point which is near 75% of VE1

SE_VE1

pu

The exciter saturation function value at VE1

SE_VE2

pu

The exciter saturation function value at VE2

AC7B initial value parameters

The parameters Ifd0 and Efd0 can be set manually by entering a numerical value. It can also be set automatically, based on load flow calculations, by entering a referenced synchronous machine variable.  For instance, if the name of the synchronous machine on which the excitation system is connected is “SM1”

  • If a thermal machine or a hydraulic machine is used, Ifd0 shall be set as “=SM1.IfdInit” multiplied by the synchronous machine parameter Xad = Xd – Xl, and Efd0 shall be set as “=SM1.EfdInit”;
  • If a pu standard or pu fundamental machine is used, Ifd0 shall be set as ��=SM1.IF_Init” and Efd0 shall be set as "=SM1.EFD_Init".

The HYPERSIM® simulation option Set Initial Conditions must be checked for the automatic initialization to work properly.

References

  • “IEEE Recommended Practice for Excitation System Models for Power System Models for Power System Stability Studies,” IEEE Standard 421.5-2005.
  • Kundur, “Power System Stability and Control”, McGraw-Hill 1994
  • Standard Dynamic Turbine-Governor Systems in NEPLAN Power System Analysis Tool
  • PSSE Explore 34 Siemens software


OPAL-RT TECHNOLOGIES, Inc. | 1751, rue Richardson, bureau 1060 | Montréal, Québec Canada H3K 1G6 | opal-rt.com | +1 514-935-2323
Follow OPAL-RT: LinkedIn | Facebook | YouTube | X/Twitter