Documentation Home Page HYPERSIM Home Page
Pour la documentation en FRANÇAIS, utilisez l'outil de traduction de votre navigateur Chrome, Edge ou Safari. Voir un exemple.

PI Section, 12-ph

Description

The PI line model is mainly used for short transmission lines. The equivalent circuit is shown below.

It is assumed that the capacitance on both sides are identical. The RL branches are also coupled. The parameters for the 12-phase PI lines are the same as for those for 3-phase PI lines, except that the dimension of the R, L and C matrices representing the impedance and admittance of the conductors is 12x12, instead of 3x3. The 12-phase PI model represents four 3-phase transmission lines in parallel. The neutral coupling between line circuits (mutual impedance) is represented only in zero sequence.

Table of Contents

Mask and Parameters

General Parameters

NameDescriptionUnitVariable = {Possible Values}
DescriptionUse this field to add information about the component
Description = {'string'}
EMTP (.pun) file for line parameters calculationThe location (path) of the EMTP file (pun file) containing the line parameters. However, The EMTP “.pun” format is not allowed with this model
File = {'path.name'}
TypeThe line data can be taken using Matrix or Sequence parameters  
Matrix/Sequence = { 0, 1}
Matrix {0}Untransposed line. The data is filled in the matrices
Sequence {1}Transposed line. The data is filled in the sequences
Line LengthThe length of the linekm

length = {0, 1e64}

Base power (perPhase)Base value for PU conversionMVA per phase

pBase = { [1, 1e64] }

Base voltage (rmsLN)Base value for PU conversionkV rms LN

vBase = { [1, 1e64] }

Base frequecyBase value for PU conversionHz

fBase = { [1, 1e64] }

Matrix Parameters

NameDescriptionUnitVariable = {Possible Values}
Resistance - RResistance matrix (12x12)Ω/kmR = {'-1e64, 1e64'}
Inductance - LInductance matrix (12x12)H/km= {'-1e64, 1e64'}
Capacitance - CCapacitance matrix (12x12)F/km= {'-1e64, 1e64'}

Sequence Parameters

NameDescriptionUnitVariable = {Possible Values}
Self impedance - Line 1RResistance value for Zero and Positive sequences (Line 1)Ω/kmRself1 = {'-1e64, 1e64'}
LInductance value for Zero and Positive sequences (Line 1)H/kmLself1 = {'-1e64, 1e64'}
CCapacitance value for Zero and Positive sequences (Line 1)F/kmCself1 = {'-1e64, 1e64'}
Self impedance - Line 2RResistance value for Zero and Positive sequences (Line 2)Ω/kmRself2 = {'-1e64, 1e64'}
LInductance value for Zero and Positive sequences (Line 2)H/kmLself2 = {'-1e64, 1e64'}
CCapacitance value for Zero and Positive sequences (Line 2)F/kmCself2 = {'-1e64, 1e64'}
Self impedance - Line 3RResistance value for Zero and Positive sequences (Line 3)Ω/kmRself3 = {'-1e64, 1e64'}
LInductance value for Zero and Positive sequences (Line 3)H/kmLself3 = {'-1e64, 1e64'}
CCapacitance value for Zero and Positive sequences (Line 3)F/kmCself3 = {'-1e64, 1e64'}
Self impedance - Line 4RResistance value for Zero and Positive sequences (Line 4)Ω/kmRself4 = {'-1e64, 1e64'}
LInductance value for Zero and Positive sequences (Line 4)H/kmLself4 = {'-1e64, 1e64'}
CCapacitance value for Zero and Positive sequences (Line 4)F/kmCself4 = {'-1e64, 1e64'}
Mutual impedance lines 1-2RMutual resistance value between lines 1-2 Ω/kmRmut12 = {'-1e64, 1e64'}
LMutual inductance value between lines 1-2 H/kmLmut12 = {'-1e64, 1e64'}
CMutual capacitance value between lines 1-2 F/kmCmut12 = {'-1e64, 1e64'}
Mutual impedance lines 1-3RMutual resistance value between lines 1-3Ω/kmRmut13 = {'-1e64, 1e64'}
LMutual inductance value between lines 1-3H/kmLmut13 = {'-1e64, 1e64'}
CMutual capacitance value between lines 1-3F/kmCmut13 = {'-1e64, 1e64'}
Mutual impedance lines 1-4RMutual resistance value between lines 1-4Ω/kmRmut14 = {'-1e64, 1e64'}
LMutual inductance value between lines 1-4H/kmLmut14 = {'-1e64, 1e64'}
CMutual capacitance value between lines 1-4F/kmCmut14 = {'-1e64, 1e64'}
Mutual impedance lines 2-4RMutual resistance value between lines 2-4Ω/kmRmut24 = {'-1e64, 1e64'}
LMutual inductance value between lines 2-4H/kmLmut24 = {'-1e64, 1e64'}
CMutual capacitance value between lines 2-4F/kmCmut24 = {'-1e64, 1e64'}
Mutual impedance lines 2-3RMutual resistance value between lines 2-3 Ω/kmRmut23 = {'-1e64, 1e64'}
LMutual inductance value between lines 2-3 H/kmLmut23 = {'-1e64, 1e64'}
CMutual capacitance value between lines 2-3 F/kmCmut23 = {'-1e64, 1e64'}
Mutual impedance lines 3-4RMutual resistance value between lines 3-4Ω/kmRmut34 = {'-1e64, 1e64'}
LMutual inductance value between lines 3-4 H/kmLmut34 = {'-1e64, 1e64'}
CMutual capacitance value between lines 3-4 F/kmCmut34 = {'-1e64, 1e64'}

Line Generator

For more information see Line Generator 

Ports, Inputs, Outputs and Signals Available for Monitoring

Ports

This component supports a 12-phase transmission line 

Name

Description

net_1_1(a,b,c)Network connection of phases (a,b,c) of the left (+) side of line 1
net_1_2(a,b,c)Network connection of phases (a,b,c) of the right side of line 1
net_2_1(a,b,c)Network connection of phases (a,b,c) of the left (+) side of line 2
net_2_2(a,b,c)Network connection of phases (a,b,c) of the right side of line 2
net_3_1(a,b,c)Network connection of phases (a,b,c) of the left (+) side of line 3
net_3_2(a,b,c)Network connection of phases (a,b,c) of the right side of line 3
net_4_1(a,b,c)Network connection of phases (a,b,c) of the left (+) side of line 4
net_4_2(a,b,c)Network connection of phases (a,b,c) of the right side of line 4

Inputs

None

Outputs

None

Sensors

None

Calculation of Line Parameters

The EMTP “.pun” format is not allowed with this model. However, the electrical parameters of PI lines can be calculated by using the Line Generator Tab.

OPAL-RT TECHNOLOGIES, Inc. | 1751, rue Richardson, bureau 1060 | Montréal, Québec Canada H3K 1G6 | opal-rt.com | +1 514-935-2323
Follow OPAL-RT: LinkedIn | Facebook | YouTube | X/Twitter